Fungal skin disease is a type of disease that is often suffered people in the tropics. Phenomena in the community often assume that this disease will heal by itself. However, if left the effects of fungal skin disease can worsen the sufferer condition. The importance of early detection and treatment is very necessary, but this requires patients go to hospital or doctor so that patients spend a lot of time and money. For this reason, was build an android expert system with speech to early diagnose fungal skin diseases. From this initial diagnosis will save time and money and provide alternative prevention for sufferers. The method used in this study is the Certainty Factor of 20 patients. The accuracy of the test results to the system compared to the results of the doctor's diagnosis is 95%. So that, this expert system can be an early alternative in diagnose fungal skin diseases in humans.
Ground-Glass Opacity (GGO) is an object found in the thorax due to infection. This object interferes with the normal function of the thorax in breathing. The characteristic of GGO has slightly lighter turbidity compared to normal thorax tissue on radiological images, so it is very difficult to identify it precisely. This study aims to identify the GGO pattern and find the exact area of the CT-scan image of COVID-19 sufferers. The data tested were 34 images from 34 different patients. The image was taken using CT-Scan equipment with the tube model 46274891G1 axially. Each patient is taken one image with the reading position right above the chest using the file format Joint Photographic Experts Group (jpg). An automatic image processing model developed in this study uses several interrelated and continuous technical steps; Image Enhancement, Convert to Binary Image, Morphology Operation, Image Inverted, Active Contour Model, Image Addition, Convert Matrix to Grayscale, Image Filtering, Convert to Binary Image, Image Subtraction and Region Properties. The results of this study can identify GGO in all patient test images, where each patient has GGO. The smallest area of GGO was 3.9%, and the highest was 34.2% of the total thorax area. This level of comparison is greatly influenced by the severity of the COVID-19 virus patient. This area of GGO weakens the normal function of the thorax in the respiratory process of the patient. Thus, this research can be used as a model recommendation in identifying thorax damage due to COVID-19 very well in following up on more intensive treatment in the future.
Fundus is an image of the inner eye surface in the form of a colored image. This image has a lot of pixel values because it consists of three basic color components. The three colors are red, green, and blue, so they need a good technique in analyzing this image. This image can be used to diagnose diabetic retinal disease caused by diabetes mellitus. This disease can interfere with human vision because objects that cover the retina of the eye is called Cotton Wool Spot (CWS). The severity of this disease can be observed from the large area of the CWS covering the retina. This study aims to calculate the exact area ratio of CWS with the retina area. The method used in this research is Image Color Feature Segmentation (ICFS). This method has four stages, namely preprocessing, segmentation, feature extraction, and feature areas. The dataset processed in this study was sourced from the Radiology Department, General Hospital of M. Djamil Padang. The dataset consists of 16 fundus images of patients who were treated at the hospital. The results of this study can identify and calculate the percentage of retinal damage is very well. Therefore, this study can be a reference in measuring the severity of diabetic retinopathy for prevention and subsequent treatment for patients and doctors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.