When Anopheles mosquitoes probe the skin for blood feeding, they inject saliva in dermal tissue. Mosquito saliva is known to exert various biological activities, but its perception by the immune system and its role in parasite transmission remain poorly understood. In the present study, we report on the cellular changes occurring in the mouse skin and draining lymph nodes after a Anopheles stephensi mosquito bite. We show that mosquito bites induce dermal mast cell degranulation, leading to fluid extravasation and neutrophil influx. This inflammatory response does not occur in mast cell-deficient W/Wv mice, unless these are reconstituted specifically with mast cells. Mast cell activation caused by A. stephensi mosquito bites is followed by hyperplasia of the draining lymph node due to the accumulation of CD3+, B220+, CD11b+, and CD11c+ leukocytes. The T cell enrichment of the draining lymph nodes results from their sequestration from the circulation rather than local proliferation. These data demonstrate that mosquito bites and very likely saliva rapidly trigger the immune system, emphasizing the critical contribution of peripheral mast cells in inducing T cell and dendritic cell recruitment within draining lymph nodes, a prerequisite for the elicitation of T and B lymphocyte priming.
While probing host skin to search for blood vessels, the female Anopheles mosquito delivers Plasmodium parasites in the presence of saliva. Saliva from various blood-feeding vectors which contains several pharmacologically active components is believed to facilitate blood feeding as well as parasite transmission to the host. Recently, we found that mosquito saliva has the capacity to activate dermal mast cells and to induce local inflammatory cell influx. Our main objective in the present work is to investigate whether saliva, through mosquito bites, controls the magnitude of Ag-specific immune responses and whether this control is dependent on the mast cell-mediated inflammatory response. Using a mast cell knockin mouse model, we found that mosquito bites consistently induced MIP-2 in the skin and IL-10 in draining lymph nodes, and down-regulate Ag-specific T cell responses by a mechanism dependent on mast cells and mediated by IL-10. Our results provide evidence for new mechanisms which may operate during Plasmodium parasite transmission by mosquito bites.
Colitis can be induced by IFN-γ-producing cytotoxic CD8(+) CTL specific for viral antigen. Blockade of the LTB(4) /BLT(1) pathway by a selective BLT(1) receptor antagonist attenuates colitis by inhibiting CD8(+) effectors recruitment in colon. These data illustrate the therapeutic potential of LTB(4) receptor selective antagonists in protection from CD8(+) T-cell-mediated intestinal inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.