Plant growth is driven by cell proliferation and elongation. The hormone gibberellin (GA) regulates Arabidopsis root growth by controlling cell elongation, but it is currently unknown whether GA also controls root cell proliferation. Here we show that GA biosynthetic mutants are unable to increase their cell production rate and meristem size after germination. GA signals the degradation of the DELLA growth repressor proteins GAI and RGA, promoting root cell production. Targeting the expression of gai (a non-GA-degradable mutant form of GAI) in the root meristem disrupts cell proliferation. Moreover, expressing gai in dividing endodermal cells was sufficient to block root meristem enlargement. We report a novel function for GA regulating cell proliferation where this signal acts by removing DELLA in a subset of, rather than all, meristem cells. We suggest that the GA-regulated rate of expansion of dividing endodermal cells dictates the equivalent rate in other root tissues. Cells must double in size prior to dividing but cannot do so independently, because they are physically restrained by adjacent tissues with which they share cell walls. Our study highlights the importance of probing regulatory mechanisms linking molecular- and cellular-scale processes with tissue and organ growth responses.
ORCID ID: 0000-0002-8568-7125 (J.B-S.).Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type-and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomatooptimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato.
SUMMARYMost plant growth occurs post-embryonically and is characterized by the constant and iterative formation of new organs. Non-invasive time-resolved imaging of intact, fully functional organisms allows studies of the dynamics involved in shaping complex organisms. Conventional and confocal fluorescence microscopy suffer from limitations when whole living organisms are imaged at single-cell resolution. We applied light sheet-based fluorescence microscopy to overcome these limitations and study the dynamics of plant growth. We designed a special imaging chamber in which the plant is maintained vertically under controlled illumination with its leaves in the air and its root in the medium. We show that minimally invasive, multi-color, three-dimensional imaging of live Arabidopsis thaliana samples can be achieved at organ, cellular and subcellular scales over periods of time ranging from seconds to days with minimal damage to the sample. We illustrate the capabilities of the method by recording the growth of primary root tips and lateral root primordia over several hours. This allowed us to quantify the contribution of cell elongation to the early morphogenesis of lateral root primordia and uncover the diurnal growth rhythm of lateral roots. We demonstrate the applicability of our approach at varying spatial and temporal scales by following the division of plant cells as well as the movement of single endosomes in live growing root samples. This multi-dimensional approach will have an important impact on plant developmental and cell biology and paves the way to a truly quantitative description of growth processes at several scales.
Bidirectional intercellular signaling is an essential feature of multicellular organisms, and the engineering of complex biological systems will require multiple pathways for intercellular signaling with minimal crosstalk. Natural quorum‐sensing systems provide components for cell communication, but their use is often constrained by signal crosstalk. We have established new orthogonal systems for cell–cell communication using acyl homoserine lactone signaling systems. Quantitative measurements in contexts of differing receiver protein expression allowed us to separate different types of crosstalk between 3‐oxo‐C6‐ and 3‐oxo‐C12‐homoserine lactones, cognate receiver proteins, and DNA promoters. Mutating promoter sequences minimized interactions with heterologous receiver proteins. We used experimental data to parameterize a computational model for signal crosstalk and to estimate the effect of receiver protein levels on signal crosstalk. We used this model to predict optimal expression levels for receiver proteins, to create an effective two‐channel cell communication device. Establishment of a novel spatial assay allowed measurement of interactions between geometrically constrained cell populations via these diffusible signals. We built relay devices capable of long‐range signal propagation mediated by cycles of signal induction, communication and response by discrete cell populations. This work demonstrates the ability to systematically reduce crosstalk within intercellular signaling systems and to use these systems to engineer complex spatiotemporal patterning in cell populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.