Standard regression approaches assume that some finite number of the response distribution characteristics, such as location and scale, change as a (parametric or nonparametric) function of predictors. However, it is not always appropriate to assume a location/scale representation, where the error distribution has unchanging shape over the predictor space. In fact, it often happens in applied research that the distribution of responses under study changes with predictors in ways that cannot be reasonably represented by a finite dimensional functional form. This can seriously affect the answers to the scientific questions of interest, and therefore more general approaches are indeed needed. This gives rise to the study of fully nonparametric regression models. We review some of the main Bayesian approaches that have been employed to define probability models where the complete response distribution may vary flexibly with predictors. We focus on developments based on modifications of the Dirichlet process, historically termed dependent Dirichlet processes, and some of the extensions that have been proposed to tackle this general problem using nonparametric approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.