Background and ObjectiveIbrutinib is used for the treatment of chronic lymphocytic leukemia and other lymphoid malignancies. The aim of this work is to develop a population pharmacokinetic model for ibrutinib and its dihydrodiol metabolite to quantify pharmacokinetic inter-and intra-individual variability, to evaluate the impact of several covariates on ibrutinib pharmacokinetic parameters, and to examine the relationship between exposure and clinical outcome. Methods Patients treated with ibrutinib were included in the study and followed up for 2 years. Pharmacokinetic blood samples were taken from months 1 to 12 after inclusion. Ibrutinib and dihydrodiol-ibrutinib concentrations were assessed using ultra-performance liquid chromatography tandem mass spectrometry. A population pharmacokinetic model was developed using NONMEM version 7.4. Results A total of 89 patients and 1501 plasma concentrations were included in the pharmacokinetic analysis. The best model consisted in two compartments for each molecule. Absorption was described by a sequential zero first-order process and a lag time. Ibrutinib was either metabolised into dihydrodiol-ibrutinib or excreted through other elimination routes. A link between the dosing compartment and the dihydrodiol-ibrutinib central compartment was added to assess for high firstpass hepatic metabolism. Ibrutinib clearance had 67% and 47% inter-and intra-individual variability, respectively, while dihydrodiol-ibrutinib clearance had 51% and 26% inter-and intra-individual variability, respectively. Observed ibrutinib exposure is significantly higher in patients carrying one copy of the cytochrome P450 3A4*22 variant (1167 ng.h/mL vs 743 ng.h/mL, respectively, p = 0.024). However, no covariates with a clinically relevant effect on ibrutinib or dihydrodiolibrutinib exposure were identified in the PK model. An external evaluation of the model was performed. Clinical outcome was expressed as the continuation or discontinuation of ibrutinib therapy 1 year after treatment initiation. Patients who had treatment discontinuation because of toxicity had significantly higher ibrutinib area under the curve (p = 0.047). No association was found between cessation of therapy due to disease progression and ibrutinib area under the curve in patients with chronic lymphocytic leukemia. For the seven patients with mantle cell lymphoma studied, an association trend was observed between disease progression and low exposure to ibrutinib. Conclusions We present the first population pharmacokinetic model describing ibrutinib and dihydrodiol-ibrutinib concentrations simultaneously. Large inter-individual variability and substantial intra-individual variability were estimated and could not be explained by any covariate. Higher plasma exposure to ibrutinib is associated with cessation of therapy due to the occurrence of adverse events within the first year of treatment. The association between disease progression and ibrutinib exposure in patients with mantle cell lymphoma should be further investigated. Tri...
Background: High-dose methotrexate is used for treating several types of cancer. However, it is associated with a high risk of acute kidney injury (AKI), especially in patients with high MTX concentrations. Although therapeutic drug monitoring is performed to monitor MTX concentrations, it is unclear what concentration should be considered critical, thus requiring rescue protocols to prevent nephrotoxicity.Methods: Patients treated with high-dose methotrexate for lymphoma or acute lymphoblastic leukemia and those benefited from therapeutic drug monitoring were included. The relationship between MTX concentrations and the presence or absence of AKI was assessed. MTX concentrations were analyzed using a population pharmacokinetic approach. Specific attention was given to morphological covariates because MTX doses are individualized according to body surface area (BSA).Results: In total, 328 patients and 657 cycles of treatment were analyzed. Higher MTX concentrations were observed in the AKI+ group. For cycle 1, all patients showing an MTX concentration .6 mM at 36 hours or .2 mM at 48 hours after infusion developed nephrotoxicity. The final pharmacokinetic model had 2 compartments and included the effect of age on clearance (CL) and of body weight on peripheral distribution volume. None of the morphological covariates tested on CL led to significant improvement in the model. Higher MTX concentrations were observed in patients with extreme BSA values ($2 m 2 ) or body mass index ($25 kg/m 2 ). Patients with AKI who received at least 1 cycle had higher BSA and BMI. Conclusions:The results from this study provide additional information on the relationship between MTX concentration and nephrotoxicity. Patients with a plasma MTX concentration .6 mM at 36 hours were more likely to manifest AKI. In addition, the results suggest that overweight patients have a high AKI risk and that BSAbased adjustment of MTX dose is not appropriate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.