Current diagnostics for community-acquired pneumonia (CAP) include testing for a wide range of pathogens, which is costly and not always informative. We compared clinical and laboratory parameters of patients with CAP caused by different groups of pathogens to evaluate the potential for targeted diagnostics and directed treatment. In a prospective study, conducted between April 2008 and April 2009, adult patients with CAP were tested for the presence of a broad range of possible respiratory pathogens using bacterial cultures, PCR, urinary antigen testing and serology. Of 408 patients with CAP, pathogens were detected in 263 patients (64.5 %). Streptococcus pneumoniae and influenza A virus were the most frequently identified bacterial and viral pathogens, respectively. Age had a significant effect on the prediction of aetiology (P50.054), with an increase in the relative contribution of viruses with advancing age. Multivariate analyses further showed that the presence of cough increased the likelihood of detecting a viral pathogen [odds ratio (OR) 5.536, 95 % confidence interval (CI) 2.130-14.390], the presence of immunodeficiency decreased the likelihood of detecting a bacterial pathogen (OR 0.595,) and an increase in pneumonia severity index score increased the likelihood of detecting a pathogen in general. Although several variables were independently associated with the detection of a pathogen group, substantial overlap meant there were no reliable clinical predictors to distinguish aetiologies. Therefore, testing for common respiratory pathogens is still necessary to optimize treatment.
Please cite this paper as: Huijskens et al. (2012) Viral and bacterial aetiology of community‐acquired pneumonia in adults. Influenza and Other Respiratory Viruses 7(4), 567–573. Background Modern molecular techniques reveal new information on the role of respiratory viruses in community‐acquired pneumonia. In this study, we tried to determine the prevalence of respiratory viruses and bacteria in patients with community‐acquired pneumonia who were admitted to the hospital. Methods Between April 2008 and April 2009, 408 adult patients (aged between 20 and 94 years) with community‐acquired pneumonia were tested for the presence of respiratory pathogens using bacterial cultures, real‐time PCR for viruses and bacteria, urinary antigen testing for Legionella and Pneumococci and serology for the presence of viral and bacterial pathogens. Results Pathogens were identified in 263 (64·5%) of the 408 patients. The most common single organisms in these 263 patients were Streptococcus pneumoniae (22·8%), Coxiella burnetii (6·8%) and influenza A virus (3·8%). Of the 263 patients detected with pathogens, 117 (44·5%) patients were positive for one or more viral pathogens. Of these 117 patients, 52 (44·4%) had no bacterial pathogen. Multiple virus infections (≥2) were found in 16 patients. Conclusion In conclusion, respiratory viruses are frequently found in patients with CAP and may therefore play an important role in the aetiology of this disease.
The aim of this study was to quantify the value of clinical predictors available in the emergency department (ED) in predicting Streptococcus pneumoniae as the cause of community-acquired pneumonia (CAP). A prospective, observational, cohort study of patients with CAP presenting in the ED was performed. Pneumococcal aetiology of CAP was based on either bacteraemia, or S. pneumoniae being cultured from sputum, or urinary immunochromatographic assay positivity, or positivity of a novel serotype-specific urinary antigen detection test. Multivariate logistic regression was used to identify independent predictors and various cut-off values of probability scores were used to evaluate the usefulness of the model. Three hundred and twenty-eight (31.0%) of 1057 patients with CAP had pneumococcal CAP. Nine independent predictors for pneumococcal pneumonia were identified, but the clinical utility of this prediction model was disappointing, because of low positive predictive values or a small yield. Clinical criteria have insufficient diagnostic capacity to predict pneumococcal CAP. Rapid antigen detection tests are needed to diagnose S. pneumoniae at the time of hospital admission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.