Surto de varíola bovina causada pelo vírus Vaccinia na região da Zona da Mata Mineira
The first three authors contributed equally to this work The last two authors share credit in this work for senior authorship Inflammatory bowel diseases (IBD) describe a group of complex intestinal disorders characterized by inflammation in the gastrointestinal tract. Current treatments for IBD include the use of antiinflammatory drugs; furthermore, recombinant lactic acid bacteria have been used as a therapeutic vehicle for anti-inflammatory agents in IBD models. Interleukin-lO (IL-IO) is one of the most important anti-inflammatory cytokines; however, its oral administration is limited because it is quickly degraded in the gastrointestinal tract and systemic treatments have led to undesirable side effects. In this study, an engineered invasive strain of Lactococcus (L.) lactis producing Fibronectin Binding Protein A (FnBPA+), from Staphylococcus aureus capable of delivering, directly inside eukaryotic cells, an eukaryotic DNA expression vector containing the ORF coding for IL-IO of Mus musculus (pValac:il-IO) was developed and its functionality was evaluated using in vitro and in vivo assays. Functionality of the plasmid and the invasive strain was demonstrated by transfection and invasiveness assays using cell cultures and in vivo in mice by fluorescence microscopy. TNBS inoculated mice that received this novel strain showed lower damage scores in their large intestines (at both macroscopic and microscopic levels), lower microbial translocation to liver, and increased anti-inflammatory/pro-inflammatory cytokine ratios compared to mice that received L. lactis FnBPA+ without the pValac:il-IO plasmid. The effectiveness was demonstrated of this novel DNA delivery therapeutic strategy in the prevention of inflammation using a murine model of colitis.
DNA vaccines are the third generation vaccines based on purified plasmid preparations containing transgenes that encode antigenic/therapeutic proteins or peptides capable of triggering an immune response against a wide range of diseases. This vaccine platform presents several attributes that confer distinct advantages over other vaccine technologies in terms of safety, ease of fabrication and stability. Many aspects, such as antigen expression and especially vector design, are under study because of their great influence on immunogenicity and efficacy of DNA vaccines. In this regard, with the attempt of improving the efficiency of DNA vaccines, co-expression of stimulatory sequences and diverse vector delivery systems are being optimized. With this in mind, this review aims to giving a conceptual approach of DNA vaccines, explaining their mechanisms of action and listing the already licensed veterinary DNA vaccines presented in the market.
Many diseases that affect the gastrointestinal tract (GIT) have great influence on the quality of life of the majority of patients. Many probiotic strains are being highly studied as a promising candidate due to their beneficial effect reported in the GIT. With the purpose of increasing the beneficial characteristics of some probiotics strains and, consequently, to improve further the reported results, many probiotic strains expressing or encoding different proteins, with anti-inflammatory activities, have been developed. These recombinant strains have been reported as good candidates for the treatment of different pathological conditions, especially colitis and mucositis disease since they have been shown to have positive results and good perspectives for GIT inflammation. Thus, this chapter will first address the aspects of the gastrointestinal tract in humans as well as its microbiota. In a second moment, it will discuss about chronic diseases, mainly the intestinal ones. Finally, it will discuss about probiotics, especially concerning on lactic acid bacteria (LAB), and its action in the prevention and treatment of these diseases. At the final part, we will point out aspects on the development of recombinant strains and the results found in the literature on disease models.
Lactic acid bacteria (LAB) represent a heterogeneous group of microorganisms that have been shown to possess therapeutic properties since they are able to prevent the development of some diseases, as shown mostly on animal models for cancer, infections and gastrointestinal disorders such as intestinal inflammation. LAB have been shown to regulate mucosal immune responses by modulating the production and liberation of regulatory agents such as cytokines by the host. Some of these cytokines, such as the anti-inflammatory interleukin-10 (IL-10), modulate the inflammatory immune response, thus immunomodulation is a mechanism by which LAB can prevent certain inflammatory bowel diseases (IBD). Since oxidative stress participates in the inflammatory processes and in the appearance of damages in pathologies of the gastrointestinal tract of humans such as IBD, LAB could also prevent inflammation by eliminating reactive oxygen species (ROS) through the activity of antioxidant enzymes. In order to obtain novel strains or enhance beneficial effects of LAB, genetic engineering has been used to produce either antioxidant enzymes (such as catalases and superoxide dismutases) or anti-inflammatory cytokines (such as IL-10) producing LAB. These novel strains have successfully been used to prevent inflammatory bowel diseases in animal models and could be evaluated in human clinical trials. Here, we present an overview of the current knowledge of the mechanisms by which LAB can be used to prevent undesired intestinal inflammatory responses and could be used as a therapeutic tool for IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.