Strains of the same Leishmania parasite species, isolated from different host organisms, may exhibit unique infection profiles and induce a change in the expression of microRNAs among host macrophages and in model host mice. MicroRNAs (MiR) are endogenous molecules of about 22 nucleotides that are involved in many regulatory processes, including the vertebrate host immune response. In this respect, the infectivity and susceptibility to antimonials of two L. infantum strains, BH46, isolated from human, and OP46, isolated from symptomatic dog, were characterized in J774 macrophages and BALB/c mice. Parasite burden was assessed in the liver, spleen, and bone marrow using the serial limiting dilution technique. A higher parasite burden was observed in the spleen and bone marrow of animals infected with OP46 compared to BH46 strain. Our results also showed that OP46 was less susceptible to the antimonials. In addition, miR-122 and miR-155 expression was evaluated in the liver and J774 macrophages, and in spleens from infected animals, respectively. An increase was observed in the expression of miR-155 in J774 macrophages infected with both strains compared to uninfected cells, with a higher expression in cells infected with OP46. However, no difference in the expression of miR-122 and miR-155 was observed in the infected animals. Thus, this study shows that OP46 was more infective for mice, it caused a higher increase in miR-155 expression in infected macrophages and was less susceptible to the antimonials evaluated. These data suggest that alteration in miR-155 level likely plays a role in regulating the response to L. infantum.
Recebido em 17/09/2018; aceito em 24/01/2019; publicado na web em 13/03/2019 Although Quercetin absorbs in the UVA/UVB electromagnetic region, it is limited for applications as a UV filter due to its low lipophilicity and capacity to penetrate the epidermis. In order to overcome this limitation, we synthetized and evaluated the photo protective properties of a derivative obtained from Quercetin. The derivative was prepared by alkylation of Quercetin with iodoethane and characterized by IR and NMR spectroscopy. The in vitro Solar Protection Factor was determined by the Mansur method and the cytotoxicity was evaluated using hepatocellular cell (Hep G2) cells. Finally, Quercetin and the corresponding derivative were incorporated in nanoemulsions. Nanoemulsions with particles sizes between 53 and 73 nm were obtained, and polydispersity indexes were around 0.1, indicating good homogeneity of the nanoemulsion particles. The cell viability study for the Quercetin derivative indicated a very low cytotoxicity profile. The chemical modification of Quercetin resulted in a promising compound with improved properties desirable for skin penetration and incorporation into sunscreen formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.