We have previously reported that kisspeptin (KP) may be under the control of the sympathetic innervation of the ovary. Considering that the sympathetic activity of the ovary increases with aging, it is possible that ovarian KP also increases during this period and participates in follicular development. To evaluate this possibility, we determined ovarian KP expression and its action on follicular development during reproductive aging in rats. We measured ovarian KP mRNA and protein levels in 6-, 8-, 10-and 12-month-old rats. To evaluate follicular developmental changes, intraovarian administration of KP or its antagonist, peptide 234 (P234), was performed using a mini-osmotic pump, and to evaluate FSH receptor (FSHR) changes in the senescent ovary, we stimulated cultured ovaries with KP, P234 and isoproterenol (ISO). Our results shows that KP expression in the ovary was increased in 10-and 12-month-old rats compared with 6-month-old rats, and this increase in KP was strongly correlated with the increase in ovarian norepinephrine observed with aging. The administration of KP produced an increase in corpora lutea and type III follicles in 6-and 10-month-old rats, which was reversed by P234 administration at 10 months. In addition, KP decreased the number and size of antral follicles in 6-and 10-month-old rats, while P234 administration produced an increase in these structures at the same ages. In ovarian cultures KP prevented the induction of FSHR by ISO. These results suggest that intraovarian KP negatively participates in the acquisition of FSHR, indicating a local role in the regulation of follicular development and ovulation during reproductive aging.
Acetylcholine (ACh) may be involved in the regulation of ovarian functions. A previous systemic study in rats showed that a 4‐week, intrabursal local delivery of the ACh‐esterase blocker Huperzine‐A increased intraovarian ACh levels and changed ovarian follicular development, as evidenced by increased healthy antral follicle numbers and corpora lutea, as well as enhanced fertility. To further characterize the ovarian cholinergic system in the rat, we studied whether innervation may contribute to intraovarian ACh. We explored the cellular distribution of three muscarinic receptors (MRs; M1, M3, and M5), analyzed the involvement of MRs in ovarian steroidogenesis, and examined their roles in ovarian follicular development in normal conditions and in animals exposed to stressful conditions by employing the muscarinic antagonist, atropine. Denervation studies decreased ovarian norepinephrine, but ovarian ACh was not affected, evidencing a local, nonneuronal source of ACh. M1 was located on granulosa cells (GCs), especially in large antral follicles. M5 was associated with the ovarian vascular system and only traces of M3 were found. Ex vivo ovary organo‐typic incubations showed that the MR agonist Carbachol did not modify steroid production or expression of steroid biosynthetic enzymes. Intrabursal, in vivo application of atropine (an MR antagonist) for 4 weeks, however, increased atresia of the secondary follicles. The results support the existence of an intraovarian cholinergic system in the rat ovary, located mainly in follicular GCs, which is not involved in steroid production but rather via MRs exerts trophic functions and regulates follicular atresia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.