Good conservation and restoration practices of cultural heritage assets rely on the knowledge of original materials. In the framework of the HERACLES Project (HERACLES-HEritage Resilience Against CLimate Events on Site, H2020 Grant Agreement 700395), dealing with the effects of climatic actions and natural hazards on built heritage, a set of important heritage sites are currently under study to improve their resilience against climate events. Among these are the medieval Gubbio Town Walls in Italy. The present work focuses on the mortars and binders of this monument and collected samples related to different parts of the Walls, corresponding to various historical periods of construction and interventions. They were characterized to determine their minerochemical composition, thermal behavior, and morphology. For that purpose, ex-situ laboratory techniques, such as X-ray diffraction (XRD), wavelength dispersive X-ray fluorescence (WDXRF), optical microscopy (OM), polarized light microscopy (PLM), scanning electron microscopy (SEM), and simultaneous differential thermal analysis and thermogravimetry (TG-DTA) were used to discern trends in different sampling areas due to construction/reconstruction periods and building techniques.
The study of building materials constituting cultural heritage is fundamental to understand their characteristics and predict their behavior. When considering materials from archaeological sites, their characterization can provide not only relevant information for a broader understanding of the site and its importance and significance but can also increase knowledge about ancient materials and their performance. The Palace of Knossos is a very important archaeological site in the European history context, and its preservation benefits from the characterization of the constituent materials. Samples of mortars from this monument were collected under the scope of the H2020 HERACLES project, where a multi-analytical approach was chosen using established protocols for the different sample typologies. Instrumental techniques such as optical microscopy (OM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and simultaneous thermogravimetry and differential thermal analysis (TG–DTA) were used for the chemical, mineralogical, and morphological characterization of these mortar samples. The results indicate that the majority are lime mortars, both aerial and hydraulic, but gypsum-based mortars were also identified. Differences in the chemical composition of the samples in distinct areas of the monument allowed us to reflect on the variety of materials used in the construction of the Palace of Knossos.
The sheltered environment of the Algares +30 level adit (underground mine gallery) contributes to the preservation of secondary water-soluble minerals formed on the tunnel walls. The massive sulphide and related stockwork zone are hosted by the Mine Tuff volcanic unit and are exposed in the walls of the gallery, showing intense oxidation and hydrothermal alteration. Minerals from the halotrichite group were identified on the efflorescent salts, typically white fine-acicular crystals but also on aggregates with dark orange/brownish colour. Mineral characterization was performed using several methods and analytical techniques (XRD, XRF-WDS, SEM-EDS, DTA-TG), and the chemical formulas were calculated maintaining the ratio A:B ≅ 1:2 in accordance with the general formula of the halotrichite group, AB2(SO4)4·22H2O. This methodology allowed the assignment of the orange colour to the presence of trivalent iron on iron-rich pickeringite in partial substitution of aluminium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.