Seed coat colour of bean seeds is decisive for acceptance of a cultivar. The objectives of this research were to determine whether there is maternal effect for "L", a* and b* colour parameters in Middle American and Andean bean seeds; to obtain estimates of heritability and gain with selection for "L", a* and b* values; and select recombinants with the seed coat colour required by the market demand. Thus, controlled crossings were carried out between the Middle American lines CNFP 10104 and CHC 01-175, and between the Andean lines Cal 96 and Hooter, for obtaining F1, F1 reciprocal, F2 and F2 reciprocal generations for each hybrid combination. Parents and generations were evaluated in two field experiments (2012 normal rainy and 2013 dry seasons) in the state of Rio Grande do Sul, Brazil. Seed coat colour was quantified with a portable colorimeter. Genetic variability for "L" (luminosity), chromaticity a* (green to red shade), and chromaticity b* (blue to yellow shade) values was observed in seeds with F2 seed coat of Middle American and Andean beans. "L", a* and b* values in bean seeds presented maternal effects. High broad-sense heritability are observed for luminosity (h(2)b: 76.66-95.07%), chromaticity a* (h(2)b: 73.08-89.31%), and chromaticity b* (h(2)b: 88.63-92.50%) values in bean seeds. From the crossings, it was possible to select bean seeds in early generation for the black group, and for carioca and cranberry types (dark or clear background) which present the colour required by the market demand.
ABSTRACT. The development of common bean cultivars with high technological quality that are biofortified with minerals, is required to meet the demand for food with health benefits. The objectives of this study were to evaluate whether common bean genotypes differ in terms of technological and mineral biofortification traits, to study the correlations between these characters, to analyze the genetic dissimilarity of common bean genotypes, and to select superior lines for these traits. For this, 14 common bean genotypes were evaluated in experiments conducted in three growing seasons in the Rio Grande do Sul State, Brazil. A significant genotype x environment interaction was observed for technological quality (mass of 100 grains and cooking time) and biofortification traits (concentration of potassium, phosphorus, calcium, iron, zinc, and copper). Positive correlation estimates were obtained between phosphorus and potassium (r = 0.575), iron and zinc (r = 0.641), copper and iron (r = 0.729), and copper and phosphorus (r = 0.533). In the main component cluster analysis, four groups of genotypes were formed. The following lines are recommended for selection: LP 11-363 for fast-cooking, CNFC 11 948 for high iron concentration, and LEC 03-14 for high potassium, phosphorus, and calcium concentrations in grains. Common bean lines with high phosphorus and iron concentrations in grains can be indirectly selected based on higher potassium, copper, and zinc concentrations. Controlled crossings between LP 11-363 x CNFC 11 948 and LP 11-363 x LEC 03-14 are recommended to obtain segregating lines that are fast-cooking and biofortified with minerals.
ABSTRACT. The genetic parameter estimates of the iron and zinc concentrations in Andean common bean seeds were obtained using the IAC Boreal × Light Red Kidney and Ouro Branco × Light Red Kidney crosses. The parents and the F 1 , F 1 reciprocal, F 2 , F 2 reciprocal, and backcross BC 11 and BC 12 generations were evaluated in a field experiment that was carried out in the state of Rio Grande do Sul, Brazil. The iron concentration in Andean common bean seeds ranged from 24.70 to 102.40 mg kg -1 dry matter (DM), the zinc concentration ranged from 10.73 to 37.50 mg kg -1 DM, and no significant maternal effect was observed. The narrow-sense heritability ranged from low (h 2 n= 19.04%) to high (h 2 n= 63.60%) for the concentrations of iron and zinc, respectively. Hybrid vigor and transgressive segregation were observed for the iron and zinc concentrations in Andean common bean seeds. In the hybrid combination IAC Boreal × Light Red Kidney, it was possible to select recombinants for the iron and zinc biofortification program. From the tested hybrid combinations, recombinants with low iron and zinc concentrations in seeds could be selected to use when the diet needs to be restricted in those minerals.
Beans can be found in different grain colours, and for this reason, it is important to understand the technological and nutritional quality of the diverse types of beans that are consumed. The objectives of this work were to identify the traits that determine Brazilian consumer choice of different bean colours and to evaluate whether different bean colours present differences in technological and nutritional traits. For this purpose, beans of different colours (white, cranberry, matte red kidney, shiny red kidney, and black) were obtained from supermarkets. The samples were evaluated for consumer preference and the technological and nutritional traits of the beans. In southern Brazil, the majority of the survey participants (58%) preferred black beans, and their choice was based on consumption habit (66%) and grain colour (30%). Different bean colours presented differences for all traits related to technological and nutritional quality, except for potassium concentration. Consumption habit and grain colour defined consumer choice for black beans. Black beans were preferred by 58% of the participants, and this type of bean has high concentrations of calcium, magnesium, iron, zinc and copper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.