It has recently been suggested that regular exercise reduces lung function decline and risk of chronic obstructive pulmonary disease (COPD) among active smokers; however, the mechanisms involved in this effect remain poorly understood.The present study evaluated the effects of regular exercise training in an experimental mouse model of chronic cigarette smoke exposure.Male C57BL/6 mice were divided into four groups (control, exercise, smoke and smoke+exercise). For 24 weeks, we measured respiratory mechanics, mean linear intercept, inflammatory cells and reactive oxygen species (ROS) in bronchoalveolar lavage (BAL) fluid, collagen deposition in alveolar walls, and the expression of antioxidant enzymes, matrix metalloproteinase 9, tissue inhibitor of metalloproteinase (TIMP)1, interleukin (IL)-10 and 8-isoprostane in alveolar walls.Exercise attenuated the decrease in pulmonary elastance (p,0.01) and the increase in mean linear intercept (p50.003) induced by cigarette smoke exposure. Exercise substantially inhibited the increase in ROS in BAL fluid and 8-isoprostane expression in lung tissue induced by cigarette smoke. In addition, exercise significantly inhibited the decreases in IL-10, TIMP1 and CuZn superoxide dismutase induced by exposure to cigarette smoke. Exercise also increased the number of cells expressing glutathione peroxidase.Our results suggest that regular aerobic physical training of moderate intensity attenuates the development of pulmonary disease induced by cigarette smoke exposure.
Changes in extracellular matrix (ECM) components in the lungs are associated with the progression of respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). Experimental and clinical studies have revealed that structural changes in ECM components occur under chronic inflammatory conditions, and these changes are associated with impaired lung function. In bronchial asthma, elastic and collagen fiber remodeling, mostly in the airway walls, is associated with an increase in mucus secretion, leading to airway hyperreactivity. In COPD, changes in collagen subtypes I and III and elastin, interfere with the mechanical properties of the lungs, and are believed to play a pivotal role in decreased lung elasticity, during emphysema progression. In ARDS, interstitial edema is often accompanied by excessive deposition of fibronectin and collagen subtypes I and III, which can lead to respiratory failure in the intensive care unit. This review uses experimental models and human studies to describe how inflammatory conditions and ECM remodeling contribute to the loss of lung function in these respiratory diseases.
Abstract:Background: Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow obstruction and inflammation. Natural products, such as monoterpenes, displayed anti-inflammatory and anti-oxidant activities and can be used as a source of new compounds to COPD treatment. Our aim was to evaluate, in an elastase-induced pulmonary emphysema in mice, the effects of and underlying mechanisms of three related natural monoterpenes (p-cymene, carvacrol and thymol) isolated from essential oil from leaves Lippia sidoides Cham. (Verbenaceae). Methods: Mices received porcine pancreatic elastase (PPE) and were treated with p-cymene, carvacrol, thymol or vehicle 30 min later and again on 7th, 14th and 28th days. Lung inflammatory profile and histological sections were evaluated. Results: In the elastase-instilled animals, the tested monoterpenes reduced alveolar enlargement, macrophages and the levels of IL-1β, IL-6, IL-8 and IL-17 in bronchoalveolar lavage fluid (BALF), and collagen fibers, MMP-9 and p-65-NF-κB-positive cells in lung parenchyma (p < 0.05). All treatments attenuated levels of 8-iso-PGF2α but only thymol was able to reduced exhaled nitric oxide (p < 0.05). Conclusion: Monoterpenes p-cymene, carvacrol and thymol reduced lung emphysema and inflammation in mice. No significant differences among the three monoterpenes treatments were found, suggesting that the presence of hydroxyl group in the molecular structure of thymol and carvacrol do not play a central role in the anti-inflammatory effects.
Exposure to particulate matter (PM) air pollution is associated with increased asthma morbidity. Residual oil flash ash (ROFA) is rich in water-soluble transition metals, which are involved in the pathological effects of PM. The objective of this study was to investigate the effects of intranasal administration of ROFA on pulmonary inflammation, pulmonary responsiveness, and excess mucus production in a mouse model of chronic pulmonary allergic inflammation. BALB/c mice received intraperitoneal injections of ovalbumin (OVA) solution (days 1 and 14). OVA challenges were performed on days 22, 24, 26, and 28. After the challenge, mice were intranasally instilled with ROFA. After forty-eight hours, pulmonary responsiveness was performed. Mice were sacrificed, and lungs were removed for morphometric analysis. OVA-exposed mice presented eosinophilia in the bronchovascular space (p < .001), increased pulmonary responsiveness (p < .001), and epithelial remodeling (p = .003). ROFA instillation increased pulmonary responsiveness (p = .004) and decreased the area of ciliated cells in the airway epithelium (p = .006). The combined ROFA instillation and OVA exposure induced a further increase in values of pulmonary responsiveness (p = .043) and a decrease in the number of ciliated cells in the airway epithelium (p = .017). PM exposure results in pulmonary effects that are more intense in mice with chronic allergic pulmonary inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.