Group 3 innate lymphoid cells (ILC3) have a prominent role in the maintenance of intestine mucosa homeostasis. The hypoxia-inducible factor (HIF) is an important modulator of immune cell activation and a key mechanism for cellular adaptation to oxygen deprivation. However, its role on ILC3 is not well known. In this study, we investigated how a hypoxic environment modulates ILC3 response and the subsequent participation of HIF-1 signaling in this process. We found increased proliferation and activation of intestinal ILC3 at low oxygen levels, a response that was phenocopied when HIF-1α was chemically stabilized and was reversed when HIF-1 was blocked. The increased activation of ILC3 relied on a HIF-1α-dependent transcriptional program, but not on mTOR-signaling or a switch to glycolysis. HIF-1α deficiency in RORyt compartment resulted in impaired IL-17 and IL-22 production by ILC3 in vivo, which reflected in a lower expression of their target genes in the intestinal epithelium and an increased susceptibility to Clostridiodes difficile infection. Taken together, our results show that HIF-1α activation in intestinal ILC3 is relevant for their functions in steady state and infectious conditions.
Recent studies suggest that NLRP3 inflammasome activation is involved in the pathogenesis of chronic kidney disease (CKD). Allopurinol (ALLO) inhibits xanthine oxidase (XOD) activity, and, consequently, reduces the production of uric acid (UA) and reactive oxygen species (ROS), both of which can activate the NLRP3 pathway. Thus, ALLO can contribute to slow the progression of CKD. We investigated whether inhibition of XOD by ALLO reduces NLRP3 activation and renal injury in the 5/6 renal ablation (Nx) model. Adult male Munich-Wistar rats underwent Nx and were subdivided into the following two groups: Nx, receiving vehicle only, and Nx + ALLO, Nx rats given ALLO, 36 mg/Kg/day in drinking water. Rats undergoing sham operation were studied as controls (C). Sixty days after surgery, Nx rats exhibited marked albuminuria, creatinine retention, and hypertension, as well as glomerulosclerosis, tubular injury, and cortical interstitial expansion/inflammation/fibrosis. Such changes were accompanied by increased XOD activity and UA renal levels, associated with augmented heme oxigenase-1 and reduced superoxide dismutase-2 renal contents. Both the NF-κB and NLRP3 signaling pathways were activated in Nx. ALLO normalized both XOD activity and the parameters of oxidative stress. ALLO also attenuated hypertension and promoted selective tubulointerstitial protection, reducing urinary NGAL and cortical interstitial injury/inflammation. ALLO reduced renal NLRP3 activation, without interfering with the NF-κB pathway. These observations indicate that the tubulointerstitial antiinflammatory and antifibrotic effects of ALLO in the Nx model involve inhibition of the NLRP3 pathway, and reinforce the view that ALLO can contribute to arrest or slow the progression of CKD.
High glucose concentration can activate TLR4 and NF-κB, triggering the production of proinflammatory mediators. We investigated whether the NF-κB pathway is involved in the pathogenesis and progression of experimental diabetic kidney disease (DKD) in a model of long-term type 1 diabetes mellitus (DM). Adult male Munich-Wistar rats underwent DM by a single streptozotocin injection, and were kept moderately hyperglycemic by daily insulin injections. After 12 months, two subgroups-progressors and non-progressors-could be formed based on the degree of glomerulosclerosis. Only progressors exhibited renal TLR4, NF-κB and IL-6 activation. This scenario was already present in rats with short-term DM (2 months), at a time when no overt glomerulosclerosis can be detected. Chronic treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), prevented activation of renal TLR4, NF-κB or IL-6, without interfering with blood glucose. PDTC prevented the development of glomerular injury/inflammation and oxidative stress in DM rats. In addition, the NF-κB p65 component was detected in sclerotic glomeruli and inflamed interstitial areas in biopsy material from patients with type 1 DM. These observations indicate that the renal NF-κB pathway plays a key role in the development and progression of experimental DKD, and can become an important therapeutic target in the quest to prevent the progression of human DKD.
Nitric oxide inhibition with Nω-nitro-l-arginine methyl ester (l-NAME), along with salt overload, leads to hypertension, albuminuria, glomerulosclerosis, glomerular ischemia, and interstitial fibrosis, characterizing a chronic kidney disease (CKD) model. Previous findings of this laboratory and elsewhere have suggested that activation of at least two pathways of innate immunity, Toll-like receptor 4 (TLR4)/NF-κB and nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome/IL-1β, occurs in several experimental models of CKD and that progression of renal injury can be slowed with inhibition of these pathways. In the present study, we investigated whether activation of innate immunity, through either the TLR4/NF-κB or NLRP3/IL-1β pathway, is involved in the pathogenesis of renal injury in chronic nitric oxide inhibition with the salt-overload model. Adult male Munich-Wistar rats that received l-NAME in drinking water with salt overload (HS + N group) were treated with allopurinol (ALLO) as an NLRP3 inhibitor (HS + N + ALLO group) or pyrrolidine dithiocarbamate (PDTC) as an NF-κB inhibitor (HS + N + PDTC group). After 4 wk, HS + N rats developed hypertension, albuminuria, and renal injury along with renal inflammation, oxidative stress, and activation of both the NLRP3/IL-1β and TLR4/NF-κB pathways. ALLO lowered renal uric acid and inhibited the NLRP3 pathway. These effects were associated with amelioration of hypertension, albuminuria, and interstitial inflammation/fibrosis but not glomerular injury. PDTC inhibited the renal NF-κB system and lowered the number of interstitial cells staining positively for NLRP3. PDTC also reduced renal xanthine oxidase activity and uric acid. Overall, PDTC promoted a more efficient anti-inflammatory and nephroprotective effect than ALLO. The NLRP3/IL-1β and TLR4/NF-κB pathways act in parallel to promote renal injury/inflammation and must be simultaneously inhibited for best nephroprotection.
Protein overload of proximal tubular cells (PTCs) can promote interstitial injury by unclear mechanisms that may involve activation of innate immunity. We investigated whether prolonged exposure of tubular cells to high protein concentrations stimulates innate immunity, triggering progressive interstitial inflammation and renal injury, and whether specific inhibition of innate or adaptive immunity would provide renoprotection in an established model of massive proteinuria, adriamycin nephropathy (ADR). Adult male Munich–Wistar rats received a single dose of ADR (5 mg/kg, iv), being followed for 2, 4, or 20 weeks. Massive albuminuria was associated with early activation of both the NF-κB and NLRP3 innate immunity pathways, whose intensity correlated strongly with the density of lymphocyte infiltration. In addition, ADR rats exhibited clear signs of renal oxidative stress. Twenty weeks after ADR administration, marked interstitial fibrosis, glomerulosclerosis, and renal functional loss were observed. Administration of mycophenolate mofetil (MMF), 10 mg/kg/day, prevented activation of both innate and adaptive immunity, as well as renal oxidative stress and renal fibrosis. Moreover, MMF treatment was associated with shifting of M from the M1 to the M2 phenotype. In cultivated NRK52-E cells, excess albumin increased the protein content of Toll-like receptor (TLR) 4 (TLR4), NLRP3, MCP-1, IL6, IL-1β, Caspase-1, α-actin, and collagen-1. Silencing of TLR4 and/or NLRP3 mRNA abrogated this proinflammatory/profibrotic behavior. Simultaneous activation of innate and adaptive immunity may be key to the development of renal injury in heavy proteinuric disease. Inhibition of specific components of innate and/or adaptive immunity may be the basis for future strategies to prevent chronic kidney disease (CKD) in this setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.