Starches from six different species (cassava, arrowroot, sweet potato, yam, canna and ginger) were isolated and some structural and physicochemical characteristics analysed and correlated. Phosphorous and amylose contents were determined using a colorimetric method and measuring iodine affinity, respectively. Molecular weight distributions of starches were analysed by Sepharose CL 2B. Granular shape and size distribution were performed using an image analyser system attached to a light microscope. Swelling power was determined at 60, 70, 80 and 90°C. Pasting and thermal properties were measured using a rapid viscoanalyser, and a differential scanning calorimeter, respectively. Phosphorous content varied from 0.007 to 0.031% for cassava and canna starches, respectively. Yam, canna and ginger starches displayed higher amylose contents (32.6, 31.7 and 26.5%, respectively) than cassava, arrowroot and sweet potato starches (19.8, 20.8 and 22.6%, respectively). These last three starches displayed amylose molecules of higher molecular weight than those shown for yam, canna and ginger starches. Canna starch showed higher proportions of longer branch chains of amylopectin than others starches. The size and shape of granules were quite variable among all starches and the average size of granules varied from 13.9 to 42.3μ for sweet potato and canna, respectively. Swelling power, pasting, and thermal properties were affected by structural characteristics of the starches.
The starch content of unripe mango Keitt is around 7% (FW), and it is converted to soluble sugars during the ripening of the detached fruit. Despite the importance of starch-to-soluble sugar metabolism for mango quality, little literature is found on this subject and none concerning the physical aspects of starch degradation. This manuscript presents some changes in the physical aspects of the starch granule during ripening, as analyzed by light microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). According to the analysis, unripe Keitt-mango-starch being spherical in shape and measuring around 15 microm, has A-type X-ray diffraction pattern with a degree of crystallinity around 21% with slight changes after 8 days of ripening. AFM images of the surface of the granules showed ultra microstructures, which are in agreement with a blocklet-based organization of the granules. The AFM-contrast image of growing layers covering the granule showed fibril-like structures, having 20 nm in diameter, transversally connecting the layer to the granule. The appearance of the partially degraded granules and the pattern of degradation were similar to those observed as a result of amylase activity, suggesting a hydrolytic pathway for the degradation of starch from mango cultivar Keitt. These results provide clues to a better understanding of starch degradation in fruits.
À minha orientadora, Professora Beatriz R. Cordenunsi. Obrigada pela confiança que depositou em mim , pelo carinho, incentivo e apoio em todos os momentos. Sua amizade e sabedoria foram fundamentais para o desenvolvimento e enriquecimento deste trabalho. Ao Professor Eduardo Purgatto, por todo auxílio prestado durante os tratamentos dos frutos e na realização dos experimentos. . Ao Professor João Roberto O. do Nascimento, pela atenção e por me ensinar a fazer as primeiras eletroforeses.
During mango ripening, soluble sugars that account for mango sweetening are accumulated through carbon supplied by both photosynthesis and starch degradation. The cultivar Keitt has a characteristic dependence on sugar accumulation during starch degradation, which takes place during ripening, only a few days after detachment from the tree. Most knowledge about starch degradation is based on seeds and leaves currently used as models. However, information about the mango fruit is scarce. This work presents the evaluation of alpha- and beta-amylases in the starch granule surface during fruit development and ripening. Extractable proteins were assayed for amylase activity and detected by immunofluorescence microscopy and correlated to gene expression. The results suggest that both amylases are involved in starch degradation during mango ripening, probably under the dependence of another signal triggered by the detachment from the mother-plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.