This paper is concerned with the economic generation dispatch problem. It is a well-known fact that practical aspects of power plant equipment, as well as the objectives to be met, may result in a nonconvex, nondifferentiable model that poses difficulties to conventional mathematical programming methods. This paper proposes the use of metaheuristic Teaching-Learning-Based Optimization to overcome such difficulties. This metaheuristic is well known for requiring a few parameters and, most importantly, it does not require the tuning of problem-dependent parameters. The algorithm proposed in this work is parameter-free; that is, the few parameters required by the Teaching-Learning-Based Optimization method are set automatically based on the power system’s data. In addition, the handling of constraints, such as generators’ prohibited zones and the generator-load-loss power balance, is performed in a very efficient way. Simulation results are shown for power systems containing 3 to 40 generation units, and the results provided by the proposed method are shown and discussed based on comparisons with other metaheuristics and a mathematical programming technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.