Cysteine peptidases of protozoa have been implicated in a variety of biological events, and the expression of these enzymes is modulated in response to distinct stimuli, including environmental changes and differentiation. In the present work, we have examined the expression of cysteine peptidases from Herpetomonas samuelpessoai grown at distinct temperatures and during dimethylsulfoxide (DMSO)-elicited differentiation. We demonstrated that a 45 kDa cysteine peptidase had its activity reduced during the parasite growth at 37 degrees C in comparison to 26 degrees C, and when cultured up to 72 h in the presence of DMSO. The modulation in the 45 kDa cysteine peptidase expression is connected to the differentiation process, since both temperature and DMSO are able to trigger the promastigote to paramastigote transformation in H. samuelpessoai. The possible immunological similarity of H. samuelpessoai proteins with well-known cysteine peptidases produced by trypanosomatid pathogens, including cruzipain (Trypanosoma cruzi) and cysteine peptidase b (cpb) from Leishmania mexicana, was also investigated, as well as with calpain molecules. The protein cellular lysate of H. samuelpessoai reacted with antibodies raised against cpb of L. mexicana and calpain of Drosophila melanogaster; however, no reaction was observed against cruzipain. The 35 kDa cpb-like protein had its expression diminished in DMSO-treated parasites, while the 80 kDa calpain-like molecule was enhanced and an additional 30 kDa calpain-related polypeptide was exclusively observed in these cells. Fluorescence microscopy and flow cytometry analyses corroborated these data. The results described above add H. samuelpessoai to the list of parasites whose differentiation seems to be correlated with cysteine peptidase expression.
In previous studies, we showed that Herpetomonas samuelpessoai produced a large amount of a surface-located metallopeptidase that presented similar biochemical properties to that of gp63 from Leishmania spp., which is a well-known virulence factor expressed by these digenetic parasites. The present study aims to identify the proteolytic activity released by living H. samuelpessoai cells. In this context, the parasites were incubated in phosphate buffer up to 4 h, and the supernatants were obtained by centrifugation and filtration steps and were then applied on SDS-PAGE to determine the secretory protein profile and on gelatin-SDS-PAGE to identify the proteolytic activity. The results demonstrated that H. samuelpessoai secreted at least 12 polypeptides and an extracellular peptidase of 66 kDa. This enzyme had its activity diminished by 1,10-phenanthroline, EDTA and EGTA. This metallopeptidase was active in a broad spectrum of pH, showing maximum activity at pH 6.0 at 37 degrees C. Casein was also cleaved by this secretory proteolytic enzyme, while bovine serum albumin and haemoglobin were not degraded under these conditions. Fluorescence microscopy and flow cytometry using anti-gp63 antibody against leishmanolysin of L. amazonensis demonstrated the presence of similar molecules on the cell-surface of H. samuelpessoai. Moreover, immunoblot analysis showed the presence of a reactive polypeptide in the cellular extract and in the supernatant fluid of H. samuelpessoai, which suggests immunological similarities between these two distinct trypanosomatids. The zinc-metallopeptidase inhibitor 1,10-phenanthroline was able to inhibit the secretion of the 66 kDa metallopeptidase in a dose-dependent manner, while the phospholipase C inhibitor (p-CMPS) did not alter the secretion pattern. Additionally, anti-cross-reacting determinant (CRD) antibody failed to recognize any secreted polypeptide from H. samuelpessoai. Collectively, these results suggest that the gp63-like molecule was released from the H. samuelpessoai surface by proteolysis instead of phospholipolysis, in a similar mechanism to that observed in Leishmania.
Parasites belonging to the Leptomonas genus have been used as model organisms for studying biochemical, cellular, and genetic processes unique to members of the Trypanosomatidae family. In the present study, the cell-associated and extracellular peptidases of three Leptomonas species, Leptomonas collosoma, Leptomonas samueli, and Leptomonas wallacei, were assayed and characterized by gelatin-sodium dodecyl sulfate polyacrylamide gel electrophoresis. All parasites released metallopeptidases, whereas no cell-associated proteolytic activity could be detected in the cellular extracts from L. collosoma. Western blotting probed with a polyclonal antibody raised against gp63 from Leishmania amazonensis revealed two major reactive polypeptides of apparent molecular masses of 63 and 52 kDa, with different intensities in cellular extracts and released proteins from the studied trypanosomatids. Flow cytometry and fluorescence microscopy analyses showed that the gp63-like molecules have a surface location. This is the first report on the presence of gp63-like molecules in L. collosoma, L. samueli, and L. wallacei. The pretreatment of L. samueli and L. wallacei with anti-gp63 antibody significantly diminished their association index to Aedes albopictus cell line (C6/36), suggesting a potential involvement of the gp63-like molecules in the interaction process of these insect trypanosomatids with the vector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.