The slow degradation and the high environmental impact caused by inappropriate disposal of polymer products are the main factors prompting scientists to either substitute conventional polymers by biodegradable ones or to enhance biodegradation of short-lived polymer products, particularly those used in packaging. Polymer blends of conventional and biodegradable polymers is one of the alternative solutions found to improve mechanical properties and accelerate polymer degradation after disposal. This work investigates the effect of incorporating different metallic stearates (Zn and Mg) on the rheological, thermal and mechanical characteristics of 75PBAT/25PCL blends processed in an internal laboratory mixer. The results of torque rheometry suggest degradation during processing potentialized with the stearates incorporation, while that of DSC indicated that the crystallinity of the blends increased with the incorporation of additives. TG data showed a reduction in the thermal stability of the systems containing stearates. Incorporation of stearates resulted in strongly thermally degraded systems. Adding up to 0.25% of magnesium stearate to the blend 75PBAT/25PCL leads to a material that combines maintenance or improvement of properties combined with higher decomposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.