In the past decade, research on test-suite-based automatic program repair has grown significantly. Each year, new approaches and implementations are featured in major software engineering venues. However, most of those approaches are evaluated on a single benchmark of bugs, which are also rarely reproduced by other researchers. In this paper, we present a large-scale experiment using 11 Java test-suite-based repair tools and 5 benchmarks of bugs. Our goal is to have a better understanding of the current state of automatic program repair tools on a large diversity of benchmarks. Our investigation is guided by the hypothesis that the repairability of repair tools might not be generalized across different benchmarks of bugs. We found that the 11 tools 1) are able to generate patches for 21% of the bugs from the 5 benchmarks, and 2) have better performance on Defects4J compared to other benchmarks, by generating patches for 47% of the bugs from Defects4J compared to 10-30% of bugs from the other benchmarks. Our experiment comprises 23,551 repair attempts in total, which we used to find the causes of non-patch generation. These causes are reported in this paper, which can help repair tool designers to improve their techniques and tools.
Well-designed and publicly available datasets of bugs are an invaluable asset to advance research fields such as fault localization and program repair as they allow directly and fairly comparison between competing techniques and also the replication of experiments. These datasets need to be deeply understood by researchers: the answer for questions like "which bugs can my technique handle?" and "for which bugs is my technique effective?" depends on the comprehension of properties related to bugs and their patches. However, such properties are usually not included in the datasets, and there is still no widely adopted methodology for characterizing bugs and patches. In this work, we deeply study 395 patches of the Defects4J dataset. Quantitative properties (patch size and spreading) were automatically extracted, whereas qualitative ones (repair actions and patterns) were manually extracted using a thematic analysisbased approach. We found that 1) the median size of Defects4J patches is four lines, and almost 30% of the patches contain only addition of lines; 2) 92% of the patches change only one file, and 38% has no spreading at all; 3) the top-3 most applied repair actions are addition of method calls, conditionals, and assignments, occurring in 77% of the patches; and 4) nine repair patterns were found for 95% of the patches, where the most prevalent, appearing in 43% of the patches, is on conditional blocks. These results are useful for researchers to perform advanced analysis on their techniques' results based on Defects4J. Moreover, our set of properties can be used to characterize and compare different bug datasets.
Benchmarks of bugs are essential to empirically evaluate automatic program repair tools. In this paper, we present BEARS, a project for collecting and storing bugs into an extensible bug benchmark for automatic repair studies in Java. The collection of bugs relies on commit building state from Continuous Integration (CI) to find potential pairs of buggy and patched program versions from open-source projects hosted on GitHub. Each pair of program versions passes through a pipeline where an attempt of reproducing a bug and its patch is performed. The core step of the reproduction pipeline is the execution of the test suite of the program on both program versions. If a test failure is found in the buggy program version candidate and no test failure is found in its patched program version candidate, a bug and its patch were successfully reproduced. The uniqueness of Bears is the usage of CI (builds) to identify buggy and patched program version candidates, which has been widely adopted in the last years in open-source projects. This approach allows us to collect bugs from a diversity of projects beyond mature projects that use bug tracking systems. Moreover, BEARS was designed to be publicly available and to be easily extensible by the research community through automatic creation of branches with bugs in a given GitHub repository, which can be used for pull requests in the BEARS repository. We present in this paper the approach employed by BEARS, and we deliver the version 1.0 of BEARS, which contains 251 reproducible bugs collected from 72 projects that use the Travis CI and Maven build environment.
Reading code is an essential activity in software maintenance and evolution. Several studies with human subjects have investigated how different factors, such as the employed programming constructs and naming conventions, can impact code readability, i.e., what makes a program easier or harder to read and apprehend by developers, and code legibility, i.e., what influences the ease of identifying elements of a program. These studies evaluate readability and legibility by means of different comprehension tasks and response variables. In this paper, we examine these tasks and variables in studies that compare programming constructs, coding idioms, naming conventions, and formatting guidelines, e.g., recursive vs. iterative code. To that end, we have conducted a systematic literature review where we found 54 relevant papers. Most of these studies evaluate code readability and legibility by measuring the correctness of the subjects' results (83.3%) or simply asking their opinions (55.6%). Some studies (16.7%) rely exclusively on the latter variable. There are still few studies that monitor subjects' physical signs, such as brain activation regions (5%). Moreover, our study shows that some variables are multi-faceted. For instance, correctness can be measured as the ability to predict the output of a program, answer questions about its behavior, or recall parts of it. These results make it clear that different evaluation approaches require different competencies from subjects, e.g., tracing the program vs. summarizing its goal vs. memorizing its text. To assist researchers in the design of new studies and improve our comprehension of existing ones, we model program comprehension as a learning activity by adapting a preexisting learning taxonomy. This adaptation indicates that some competencies, e.g., tracing, are often exercised in these evaluations whereas others, e.g., relating similar code snippets, are rarely targeted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.