This article aimed to improve the relative solubility and dissolution rate of ferulic acid (FA) by the use of spray-dried solid dispersions (SDs) in order to ensure its in vitro antioxidant potential and to enhance its in vivo anti-platelet effect. These SDs were prepared by spray-drying at 10 and 20% of drug concentration using polyvinylpyrrolidone K30 (PVP-K30), polyethylene glycol 6000 (PEG 6000) and poloxamer-188 (PLX-188) as carriers. SDs and physical mixtures (PM) were characterized by SEM, XRPD, FTIR spectroscopy and TGA analysis. Spray-dried SDs containing FA were successfully obtained. Relative solubility of FA was improved with increasing carrier concentration. PVP-K30 and PEG 6000 formulations showed suitable drug content values close to 100%, whereas PLX-188 presented mean values between 70 and 90%. Agglomerates were observed depending on the carrier used. XRPD patterns and thermograms indicated that spray-drying led to drug amorphization and provided appropriate thermal stability, respectively. FTIR spectra demonstrated no remarkable interaction between carrier and drug for PEG 6000 and PLX-188 SDs. PVP-K30 formulations had changes in FTIR spectra, which denoted intermolecular O-H•••O = C bonds. Spray-dried SDs played an important role in enhancing dissolution rate of FA when compared to pure drug. The free radical-scavenging assay confirmed that the antioxidant activity of PEG 6000 10% SDs was kept. This formulation also provided a statistically increased in vivo anti-platelet effect compared to pure drug. In summary, these formulations enhanced relative solubility and dissolution rate of FA and chosen formulation demonstrated suitable in vitro antioxidant activity and improved in vivo anti-platelet effect.
Microparticles of poly(ε-caprolactone) (PCL) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)
containing manidipine dihydrochloride (MAN) were successfully prepared by the simple emulsion/solvent evaporation method. All formulations
showed loading efficiency rates greater than 80% and average particle size less than 8 μm. Formulations had spherical shape with smooth and porous surface for PCL and PHBV, respectively. According to Fourier-transform infrared spectroscopy, initial components were not chemically modified during microencapsulation. X-ray diffraction patterns and differential scanning calorimetry demonstrated that this process led to drug amorphization. In vitro dissolution studies showed that all microparticles prolonged MAN release, mainly which one obtained using PCL that contained 5% of drug loaded (PCL-M5). Animal studies demonstrated that formulation PCL-M5 was able to keep the variation of mean arterial pressure after phenylephrine administration up to 24 hours. These data confirmed the sustained antihypertensive effect of the investigated microparticles. Results provided an experimental basis for using formulation PCL-M5 as a feasible carrier for oral controlled release of MAN intended for treating high blood pressure.
Acyclovir (ACV) has been investigated during the past years, mainly due to its antiviral activity. Assessment of possible incompatibility between an active component and different excipients along with the evaluation of thermal stability are crucial parts of a normal study prior to the final formulation setting of a medicine. Thermal analysis studies were used as important and complementary tools during pre-formulation to determine the compatibility of drug-excipients with the purpose of developing an acyclovir extended release formulation. Fourier transform infrared spectroscopy (FT-IR) and x-ray powder diffraction (XRPD) analyses were also realized. The results showed that ACV only exhibited interaction that could influence the stability of the product in the binary mixtures of ACV/magnesium stearate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.