This study builds upon existing research suggesting recent changes in the circulation of global subtropical gyres with respect to the South Atlantic Ocean using simulation results from the ocean component of the Community Earth System Model version 1—the Parallel Ocean Program version 2. The results point to an intensification of the total anticyclonic circulation of the subtropical gyre and a southward displacement of the system, as revealed by the wind stress curl, sea surface height, and barotropic stream function fields. Increased values of these variables were found within the dynamical limits of the South Atlantic Subtropical Gyre (SASG), while their basin‐scale structure seemed to be concurrently drifting poleward. The southern branch of the South Equatorial Current (sSEC) marks the northern boundary of the SASG. When reaching the South American coast, it bifurcates into the North Brazil Undercurrent to the north and the Brazil Current to the south. The sSEC bifurcation latitude (SBL) dictates the partition between the waters flowing poleward to recirculate within the SASG and those flowing toward the equatorial region and the Northern Hemisphere. A southward migration of the SBL at a rate of −0.11°± 0.03°/year was observed, associated with a substantial increase in the equatorward advection of waters within the sSEC‐SBL‐North Brazil Undercurrent system.
Interocean waters that are carried northward through South Atlantic surface boundary currents get meridionally split between two large-scale systems when meeting the South American coast at the western subtropical portion of the basin. This distribution of the zonal flow along the coast is investigated during the Last Millennium, when natural forcing was key to establish climate variability. Of particular interest are the changes between the contrasting periods of the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). The investigation is conducted with the simulation results from the Community Earth System Model Last Millennium Ensemble (CESM-LME). It is found that the subtropical South Atlantic circulation pattern differs substantially between these natural climatic extremes, especially at the northern boundary of the subtropical gyre, where the westward-flowing southern branch of the South Equatorial Current (sSEC) bifurcates off the South American coast, originating the equatorward-flowing North Brazil Undercurrent (NBUC) and the poleward Brazil Current (BC). It is shown that during the MCA, a weaker anti-cyclonic subtropical gyre circulation took place (inferred from decreased southern sSEC and BC transports), while the equatorward transport of the Meridional Overturning Circulation return flow was increased (intensified northern sSEC and NBUC). The opposite scenario occurs during the LIA: a more vigorous subtropical gyre circulation with decreased northward transport.
Water transformation around Antarctica is recognized to significantly impact the climate. It is where the linkage between the upper and lower limbs of the Meridional Overturning Circulation (MOC) takes place by means of dense water formation, which may be affected by rapid climate change. Simulation results from the Community Earth System Model Last Millennium Ensemble (CESM–LME) are used to investigate the Weddell Sea Warm Deep Water (WDW) evolution during the Last Millennium (LM). The WDW is the primary heat source for the Weddell Sea (WS) and accounts for 71% of the Weddell Sea Bottom Water (WSBW), which is the regional variety of the Antarctic Bottom Water (AABW)—one of the densest water masses in the ocean bearing directly on the cold deep limb of the MOC. Earth System Models (ESMs) are known to misrepresent the deep layers of the ocean (below 2000 m), hence we aim at the upper component of the deep meridional overturning cell, i.e., the WDW. Salinity and temperature results from the CESM–LME from a transect crossing the WS are evaluated with the Optimum Multiparameter Analysis (OMP) water masses decomposition scheme. It is shown that, after a long–term cooling over the LM, a warming trend takes place at the surface waters in the WS during the 20th century, which is coherent with a global expression. The subsurface layers and. mainly. the WDW domain are subject to the same long–term cooling trend, which is decelerated after 1850 (instead of becoming warmer like the surface waters), probably due interactions with sea ice–insulated ambient waters. The evolution of this anomalous temperature pattern for the WS is clear throughout the three major LM climatic episodes: the Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and late 20th century warming. Along with the continuous decline of WDW core temperatures, heat content in the water mass also decreases by 18.86%. OMP results indicate shoaling and shrinking of the WDW during the LM, with a ~6% decrease in its cross–sectional area. Although the AABW cannot be directly assessed from CESM–LME results, changes in the WDW structure and WS dynamics have the potential to influence the deep/bottom water formation processes and the global MOC.
The upper limb of the Atlantic meridional overturning circulation brings shallow interocean contributions to replenish the North Atlantic export of deepwaters. It is primarily formed in the southern South Atlantic where the converging entrainment of Pacific and Indian Ocean waters meet and incorporate into the South Atlantic subtropical gyre. Here, we use Community Earth System Model 1 Large Ensemble simulation results along 1920–2100 to investigate the response of the Atlantic meridional overturning circulation upper limb and the South Atlantic subtropical gyre to future human-induced climate warming under business-as-usual greenhouse gas emissions. In terms of flow redistribution, we find that the Atlantic meridional overturning circulation upper limb weakens not because less waters are being imported from the Pacific and Indian basins — but because waters are being mostly directed to recirculate in the southwestern portion of a distorted South Atlantic subtropical gyre, turning back southward after reaching the South Atlantic western boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.