Background Ubiquitous in natural and engineered ecosystems, microbial immigration is one of the mechanisms shaping community assemblage. However, quantifying immigration impact remains challenging especially at individual population level. The activities of immigrants in the receiving community are often inadequately considered, leading to potential bias in identifying the relationship between community composition and environmental parameters. Results This study quantified microbial immigration from an upstream full-scale anaerobic reactor to downstream activated sludge reactors. A mass balance was applied to 16S rRNA gene amplicon sequencing data to calculate the net growth rates of individual populations in the activated sludge reactors. Among the 1178 observed operational taxonomic units (OTUs), 582 had a positive growth rate, including all the populations with abundance > 0.1%. These active populations collectively accounted for 99% of the total sequences in activated sludge. The remaining 596 OTUs with a growth rate ≤ 0 were classified as inactive populations. All the abundant populations in the upstream anaerobic reactor were inactive in the activated sludge process, indicating a negligible immigration impact. We used a supervised learning regressor to predict environmental parameters based on community composition and compared the prediction accuracy based on either the entire community or the active populations. Temperature was the most predictable parameter, and the prediction accuracy was improved when only active populations were used to train the regressor. Conclusions Calculating growth rate of individual microbial populations in the downstream system provides an effective approach to determine microbial activity and quantify immigration impact. For the studied biological process, a marginal immigration impact was observed, likely due to the significant differences in the growth environments between the upstream and downstream processes. Excluding inactive populations as a result of immigration further enhanced the prediction of key environmental parameters affecting process performance. Electronic supplementary material The online version of this article (10.1186/s40168-019-0682-x) contains supplementary material, which is available to authorized users.
Vinyl chloride (VC) is a frequent groundwater contaminant and a known human carcinogen. Bioremediation is a potential cleanup strategy for contaminated sites; however, little is known about the bacteria responsible for aerobic VC degradation in mixed microbial communities. In attempts to address this knowledge gap, the microorganisms able to assimilate labeled carbon ((13)C) from VC within a mixed culture capable of rapid VC degradation (120 μmol in 7 days) were identified using stable isotope probing (SIP). For this, at two time points during VC degradation (days 3 and 7), DNA was extracted from replicate cultures initially supplied with labeled or unlabeled VC. The extracted DNA was ultracentrifuged, fractioned, and the fractions of greater buoyant density (heavy fractions, 1.758 to 1.780 g mL(-1)) were subject to high-throughput sequencing. Following this, specific primers were designed for the most abundant phylotypes in the heavy fractions. Then, quantitative PCR (qPCR) was used across the buoyant density gradient to confirm label uptake by these phylotypes. From qPCR and/or sequencing data, five phylotypes were found to be dominant in the heavy fractions, including Nocardioides (∼40 %), Sediminibacterium (∼25 %), Aquabacterium (∼17 %), Variovorax (∼6 %), and Pseudomonas (∼1 %). The abundance of two functional genes (etnC and etnE) associated with VC degradation was also investigated in the SIP fractions. Peak shifts of etnC and etnE gene abundance toward heavier fractions were observed, indicating uptake of (13)C into the microorganisms harboring these genes. Analysis of the total microbial community indicated a significant dominance of Nocardioides over the other label-enriched phylotypes. Overall, the data indicate Nocardioides is primarily responsible for VC degradation in this mixed culture, with the other putative VC degraders generating a small growth benefit from VC degradation. The specific primers designed toward the putative VC degraders may be of use for investigating VC degradation potential at contaminated sites.
The explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) has long been recognized as a problematic environmental pollutant, and efforts to remediate contaminated soils, sediments, and groundwater have been going on for decades. In recent years, much interest has focused on using bioremediation to clean up these sites. The current study investigated the microorganisms (16S rRNA genes, Illumina) and functional genes (xenA, xenB, and xplA) linked to RDX biodegradation in microcosms composed of sediment or groundwater from two Navy sites. For this, experiments included sediment samples from three depths (5 to 30 ft) from two wells located in one Navy site. In addition, the groundwater upstream and downstream of an emulsified oil biobarrier was examined from another Navy site. Further, for the groundwater experiments, the effect of glucose addition was explored. For the sediment experiments, the most enriched phylotypes during RDX degradation varied over time, by depth and well locations. However, several trends were noted, including the enrichment of Pseudomonas, Rhodococcus, Arthrobacter, and Sporolactobacillus in the sediment microcosms. For the groundwater-based experiments, Pseudomonas, unclassified Rhodocyclaceae, Sphingomonas, and Rhodococcus were also highly abundant during RDX degradation. The abundance of both xplA and xenA significantly increased during RDX degradation compared to the control microcosms for many treatments (both groundwater and sediment microcosms). In a limited number of microcosms, the copy number of the xenB gene increased. Phylotype data were correlated with functional gene data to highlight potentially important biomarkers for RDX biodegradation at these two Navy sites.
Fermentation of waste activated sludge (WAS) is an alternative approach to reduce solid wastes while providing valuable soluble products, such as volatile fatty acids and alcohols. This study systematically identified optimal fermentation conditions and key microbial populations by conducting two sets of experiments under different combinations of biochemical and physical parameters. Based on fermentation product concentrations, methane production, and solid removal, fermentation performance was enhanced under the combined treatments of inoculum heat shock (>60°C), pH 5, 55°C, and short solid retention time (<10 days). An ecogenomics-based mass balance (EGMB) approach was used to determine the net growth rates of individual microbial populations, and classified them into four microbial groups: known syntrophs, known methanogens, fermenters, and WAS-associated populations. Their growth rates were observed to be affected by the treatment conditions. The growth rates of syntrophs and fermenters, such as Syntrophomonas and Parabacteroides increased with a decrease in SRT. In contrast, treatment conditions, such as inoculum heat shock and high incubation temperature inhibited the growth of WAS-associated populations, such as Terrimonas and Bryobacter. There were also populations insensitive to the treatment conditions, such as those related to Microbacter and Rikenellaceae. Overall, the EGMB approach clearly revealed the ecological roles of important microbial guilds in the WAS fermentation system, and guided the selection of optimal conditions for WAS fermentation in future pilot-scale operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.