Ovarian cancer is the second most common gynaecologic malignancy and the main cause of death from gynaecologic cancer, due to late diagnosis and chemoresistance. Studies have reported the role of cysteine in cancer, by contributing for hydrogen sulphide (H2S) generation and as a precursor of glutathione (GSH). However, the role of cysteine in the adaptation to hypoxia and therapy response remains unclear. We used several ovarian cancer cell lines, ES2, OVCAR3, OVCAR8, A2780 and A2780cisR, to clarify cysteine relevance in ovarian cancer cells survival upon hypoxia and carboplatin. Results show that ES2 and OVCAR8 cells presented a stronger dependence on cysteine availability upon hypoxia and carboplatin exposure than OVCAR3 cells. Interestingly, the A2780 cisR, but not A2780 parental cells, benefits from cysteine upon carboplatin exposure, showing that cysteine is crucial for chemoresistance. Moreover, GSH degradation and subsequent cysteine recycling pathway is associated with ovarian cancer as seen in peripheral blood serum from patients. Higher levels of total free cysteine (Cys) and homocysteine (HCys) were found in ovarian cancer patients in comparison with benign tumours and lower levels of GSH were found in ovarian neoplasms patients in comparison with healthy individuals. Importantly, the total and S-Homocysteinylated levels distinguished blood donors from patients with neoplasms as well as patients with benign from patients with malignant tumours. The levels of S-cysteinylated proteins distinguish blood donors from patients with neoplasms and the free levels of Cys in serum distinguish blood from patients with benign tumours from patients with malignant tumours. Herein we disclosed that cysteine contributes for a worse disease prognosis, allowing faster adaptation to hypoxia and protecting cells from carboplatin. The measurement of serum cysteine levels can be an effective tool for early diagnosis, for outcome prediction and follow up of disease progression.
Chemoresistance to platinum-based antineoplastic agents is a consistent feature among ovarian carcinomas; however, whereas high-grade serous carcinoma (OSC) acquires resistance during chemotherapy, ovarian clear cell carcinoma (OCCC) is intrinsically resistant. The main objective of this study was to explore, in vitro and in vivo, if hepatocyte nuclear factor 1β (HNF1β) and glutaminolysis contribute for the resistance of OCCC to carboplatin through the intrinsically increased GSH bioavailability. To disclose the role of HNF1β, experiments were also performed in an OSC cell line, which does not express HNF1β. Metabolic profiles, GSH quantification, HNF1β, and γ-glutamylcysteine ligase catalytic subunit (GCLC) and modifier subunit (GCLM) expression, cell cycle, and death were assessed in ES2 cell line (OCCC) and OVCAR3 cell line (OSC); HNF1β knockdown was performed in ES2 and murine model of subcutaneous and peritoneal OCCC tumors was established to test buthionine sulphoxamine (BSO), as a sensitizer to carboplatin. Glutaminolysis is activated in ES2 and OVCAR3, though ES2 exclusively synthesizes amino acids and GSH. ES2 cells are more resistant to carboplatin than OVCAR3 and the abrogation of GSH production by BSO sensitizes ES2 to carboplatin. HNF1β regulates the expression of GCLC, but not GCLM, and consequently GSH production in ES2. In vivo, BSO prior to carboplatin reduces dramatically subcutaneous tumor size and GSH levels, as well as peritoneal dissemination. Our study discloses HNF1β as the mediator of intrinsic OCCC chemoresistance and sheds a light to re-explore a cancer adjuvant therapeutic approach using BSO to overcome the lack of efficient therapy in OCCC.
Bone marrow contains endothelial progenitor cells (EPCs) that, upon pro-angiogenic stimuli, migrate and differentiate into endothelial cells (ECs) and contribute to re-endothelialization and neo-vascularization. There are currently no reliable markers to characterize EPCs, leading to their inaccurate identification. In the past, we showed that, in a panel of tumors, some cells on the vessel wall co-expressed CD14 (monocytic marker) and CD31 (EC marker), indicating a putative differentiation route of monocytes into ECs. Herein, we disclosed monocytes as potential EPCs, using in vitro and in vivo models, and also addressed the cancer context. Monocytes acquired the capacity to express ECs markers and were able to be incorporated into blood vessels, contributing to cancer progression, by being incorporated in tumor neo-vasculature. Reactive oxygen species (ROS) push monocytes to EC differentiation, and this phenotype is reverted by cysteine (a scavenger and precursor of glutathione), which indicates that angiogenesis is controlled by the interplay between the oxidative stress and the scavenging capacity of the tumor microenvironment.Over the last decade, different studies reported EPCs as essential in restoring injured vessels. EPCs belong to a subset of cells, arising from hematopoietic stem cells in bone marrow; upon pro-angiogenic stimuli, they proliferate, migrate, and differentiate into endothelial cells (ECs) [4][5][6]. Some reports addressing EPCs and disease, such as systemic sclerosis, showed contradictory and discrepant results about EPCs mobilization and differentiation; in part, because there is a lack of a precise panel of cell surface markers used for the characterization of this subset of cells [4][5][6][7][8][9][10]. In mouse embryonic vascular endothelium, erythro-myeloid progenitors (EMPs) can differentiate into ECs [11] and in a mouse model of carotid injury, monocytes (CD14 + cells) are capable of improving re-endothelialization [12]. In vivo and in vitro targeting of Tie2-monocytes decreases angiogenesis by abrogating EC proliferation [13][14][15] and an in vivo CCR2 (chemokine (C-C motif) receptor 2) knockout impairs monocytes recruitment and VEGFA (also named VEGF, vascular endothelial growth factor) expression, accompanied by a reduction in the angiogenesis rate [16]. The release of cytokines and pro-angiogenic factors (e.g., VEGFA, VEGFC, and VEGFD, TNFα (tumor necrosis factor α), IL-8 (interleukin-8), and FGF-2 (fibroblast growth factor-2), and extracellular matrix (ECM) modifying proteins (e.g., metalloproteinase-9 (MMP-9)) by macrophages enhances the tissue's ability to support capillary sprouting and vascular density [17,18]. The precise mechanism by which monocytes influence angiogenesis in tissue development, homeostasis, and diseases is not fully understood. However, different studies, have shown that under in vitro pro-angiogenic pressure, blood mononuclear cells can acquire endothelial markers and morphology [19][20][21]. In addition, in a previous study, we showed that some ECs sim...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.