The factors involved in rRNA processing in eukaryotes assemble cotranscriptionally onto the nascent prerRNAs and include endonucleases, exonucleases, RNA helicases, GTPases, modifying enzymes and snoRNPs (small nucleolar ribonucleoproteins). The precursor of three of the four eukaryotic mature rRNAs contains the rRNA sequences flanked by two internal (ITS1 and ITS2) and two external (5¢-ETS and 3¢-ETS) spacer sequences that are removed during processing [1,2]. The pre-rRNA is first assembled into a 90S particle that contains U3 snoRNP and 40S subunit-processing factors [3,4]. The early pre-rRNA endonucleolytic cleavages at sites A 0 , A 1 and A 2 occur within the 90S particles [3,5]. A 2 cleavage releases the first pre60S particle, which differs in composition from the known 90S particle. Pre60S particles contain 27S rRNA, ribosomal L proteins and many nonribosomal proteins [6].As they mature, pre60S particles migrate from the nucleolus to the nucleoplasm and their content of nonribosomal factors changes [7,8]. Nip7p was among the proteins identified in the early pre60S particle [6][7][8], and has been shown to participate in the processing of 27S pre-rRNA to the formation of 25S [9]. Interestingly, Nip7p also binds the exosome subunit Rrp43p [10]. The exosome complex is responsible for the degradation of the excised 5¢-ETS and for the 3¢)5¢ exonucleolytic processing of 7S pre-rRNA to form the mature 5.8S rRNA. The exosome is also involved in the processing of snoRNAs and in mRNA degradation [11][12][13].During processing, pre-rRNA undergoes covalent modifications that include isomerization of some uridines into pseudouridines and addition of methyl groups to specific nucleotides, mainly at the 2¢-O posi- In eukaryotes, pre-rRNA processing depends on a large number of nonribosomal trans-acting factors that form large and intriguingly organized complexes. A novel nucleolar protein, Nop53p, was isolated by using Nop17p as bait in the yeast two-hybrid system. Nop53p also interacts with a second nucleolar protein, Nip7p. A carbon source-conditional strain with the NOP53 coding sequence under the control of the GAL1 promoter did not grow in glucose-containing medium, showing the phenotype of an essential gene. Under nonpermissive conditions, the conditional mutant strain showed rRNA biosynthesis defects, leading to an accumulation of the 27S and 7S pre-rRNAs and depletion of the mature 25S and 5.8S mature rRNAs. Nop53p did not interact with any of the exosome subunits in the yeast twohybrid system, but its depletion affects the exosome function. In pull-down assays, protein A-tagged Nop53p coprecipitated the 27S and 7S pre-rRNAs, and His-Nop53p also bound directly 5.8S rRNA in vitro, which is consistent with a role for Nop53p in pre-rRNA processing.Abbreviations ETS, external transcribed spacer; b-Gal, b-galactosidase; GFP, green fluorescent protein; GST, glutathione S-transferase; ITS, internal transcribed spacer; RFP, red fluorescent protein; snoRNP, small nucleolar ribonucleoprotein.
H/ACA ribonucleoprotein particles are essential for ribosomal RNA and telomerase RNA processing and metabolism. Shq1p has been identified as an essential eukaryotic H/ACA small nucleolar (sno) ribonucleoparticle (snoRNP) biogenesis and assembly factor. Shq1p is postulated to be involved in the early biogenesis steps of H/ACA snoRNP complexes, and Shq1p depletion leads to a specific decrease in H/ACA small nucleolar RNA levels and to defects in ribosomal RNA processing. Shq1p contains two predicted domains as follows: an N-terminal CS (named after CHORD-containing proteins and SGT1) or HSP20-like domain, and a C-terminal region of high sequence homology called the Shq1 domain. Here we report the crystal structure and functional studies of the Saccharomyces cerevisiae Shq1p CS domain. The structure consists of a compact antiparallel -sandwich fold that is composed of two -sheets containing four and three -strands, respectively, and a short ␣-helix. Deletion studies showed that the CS domain is required for the essential functions of Shq1p. Point mutations in residues Phe-6, Gln-10, and Lys-80 destabilize Shq1p in vivo and induce a temperature-sensitive phenotype with depletion of H/ACA small nucleolar RNAs and defects in rRNA processing. Although CS domains are frequently found in co-chaperones of the Hsp90 molecular chaperone, no interaction was detected between the Shq1p CS domain and yeast Hsp90 in vitro. These results show that the CS domain is essential for Shq1p function in H/ACA snoRNP biogenesis in vivo, possibly in an Hsp90-independent manner.Modification of uridine to pseudouridine in ribosomal RNA and some spliceosomal RNAs is catalyzed by highly specialized ribonucleoparticle (RNP) 3 complexes called box H/ACA RNPs (1-5). Depending on their site of maturation and action H/ACA RNPs are classified into two classes, small nucleolar RNPs (snoRNPs) and small Cajal body RNPs. In Saccharomyces cerevisiae, H/ACA snoRNPs contain four proteins: Nhp2p (L7ae in archaea (6) and Cbf5p, also called dyskerin, in humans (7)), Nop10p, Gar1p, and a single small nucleolar RNA (snoRNA), specific to each snoRNP (8 -11). Cbf5p provides the pseudouridylase activity to the complex, and the snoRNA component provides the "guide RNA" for positioning the substrate RNA for modification (8,10,(12)(13)(14)(15). The 3Ј end of human telomerase RNA (hTR) contains an H/ACA scaRNA domain that binds the H/ACA proteins and is required for 3Ј end processing, accumulation, and localization of hTR to Cajal bodies (16 -19). In archaea, the assembly of H/ACA snoRNP appears to proceed by assembly of the protein components, followed by the incorporation of the H/ACA RNA (8, 20 -23). In eukaryotes, the assembly and final maturation of the holoenzyme RNP are more complicated, possibly because of subcellular compartmentalization, and require accessory proteins (22, 24). Two proteins specifically found in eukaryotes, Naf1p and Shq1p, were initially identified in yeast as factors involved in the assembly of H/ACA snoRNPs (23-25). Both Shq1p and Naf1...
Although the study of RNA therapeutics started decades ago, for many years, this field of research was overshadowed by the growing interest in DNA-based therapies. Nowadays, the role of several types of RNA in cell regulation processes and the development of various diseases have been elucidated, and research in RNA therapeutics is back with force. This short literature review aims to present general aspects of many of the molecules currently used in RNA therapeutics, including in vitro transcribed mRNA, antisense oligonucleotides, aptamers, small interfering RNAs, and microRNAs. In addition, we describe the state of the art of technologies applied for synthetic RNA manufacture and delivery. Likewise, we detail the RNA-based therapies approved by the FDA so far, as well as the ongoing clinical investigations. As a final point, we highlight the current and potential advantages of working on RNA-based therapeutics and how these could lead us to a new era of accessible and personalized healthcare.
BackgroundBox C/D snoRNPs are responsible for rRNA methylation and processing, and are formed by snoRNAs and four conserved proteins, Nop1, Nop56, Nop58 and Snu13. The snoRNP assembly is a stepwise process, involving other protein complexes, among which the R2TP and Hsp90 chaperone. Nop17, also known as Pih1, has been shown to be a constituent of the R2TP (Rvb1, Rvb2, Tah1, Pih1) and to participate in box C/D snoRNP assembly by its interaction with Nop58. The molecular function of Nop17, however, has not yet been described.ResultsTo shed light on the role played by Nop17 in the maturation of snoRNP, here we analyzed the interactions domains of Nop58 – Nop17 – Tah1 and the importance of ATP to the interaction between Nop17 and the ATPase Rvb1/2.ConclusionsBased on the results shown here, we propose a model for the assembly of box C/D snoRNP, according to which R2TP complex is important for reducing the affinity of Nop58 for snoRNA, and for the binding of the other snoRNP subunits.Electronic supplementary materialThe online version of this article (doi:10.1186/s12867-015-0037-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.