The purpose of this study was to suggest modifications of autopsy techniques in order to improve post-mortem diagnosis of arterial gas embolism (AGE) based on multidisciplinary investigation of SCUBA diving fatalities. Five adult human cadavers from the voluntary donation program of the Human Anatomy Laboratory, and eight judicial autopsied bodies of SCUBA divers from the Forensic Pathology Service were assessed. Before performing any autopsies, we accessed the diving plan and the divers' profiles for each case. We then introduced a new dissection procedure that included identification, isolation, and manipulation of carotid, vertebral and thoracic arterial systems. The dissected vascular structures that allowed optimall isolation of the systemic arterial circulation were identified and ligated. In three of the eight judicial cases, we had a strongly suggestive history of arterial gas embolism following pulmonary barotrauma (PBt/AGE). In these cases, the additional arterial dissection allowed us to clearly diagnose AGE in one of them. The autopsy of the rest of the cases showed other causes of death such as asphyxia by drowning and heart attack. In all cases we were able to reject decompression sickness, and in some of them we showed the presence of artefacts secondary to decomposition and resuscitation maneuvers. These results allow us to suggest a specific autopsy technique divided into four steps, aimed at confirming or excluding some evidence of dysbaric disorders according to a re-enactment of the incident. We have demonstrated the presence of large volumes of intravascular air, which is typical of PBt/AGE.
β-Thalassemia intermedia (β-TI) patients present with a wide spectrum of phenotypes depending on the presence of primary, secondary, and tertiary genetic modifiers which modulate, by different mechanisms, the degree of imbalance between α and β chains. Here we describe a new β(0) frameshift mutation, HBB: c.44delT (p.Leu14ArgfsX5), identified in four members of a family, associated with secondary genetic modifiers in three of them. The different genotype present in this family was suspected after hematological analysis and thorough observation of blood smears highlighting their importance in the identification of β-TI patients among members of the same family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.