Free nerve endings are key structures in sensory transduction of noxious stimuli. In spite of this, little is known about their functional organization. Transient receptor potential (TRP) channels have emerged as key molecular identities in the sensory transduction of pain-producing stimuli, yet the vast majority of our knowledge about sensory TRP channel function is limited to data obtained from in vitro models which do not necessarily reflect physiological conditions. In recent years, the development of novel optical methods such as genetically encoded calcium indicators and photo-modulation of ion channel activity by pharmacological tools has provided an invaluable opportunity to directly assess nociceptive TRP channel function at the nerve terminal.
The role of TRPA1 in the thermosensitivity of the corneal cold thermoreceptor nerve endings was studied in young and aged mice. The contribution of the TRPA1-dependent activity to basal tearing and thermally-evoked blink was also explored. The corneal cold thermoreceptors’ activity was recorded extracellularly in young (5-month-old) and aged (18-month-old) C57BL/6WT (WT) and TRPA1−/− knockout (TRPA1-KO) mice at basal temperature (34 °C) and during cooling (15 °C) and heating (45 °C) ramps. The blink response to cold and heat stimulation of the ocular surface and the basal tearing rate were also measured in young animals using orbicularis oculi muscle electromyography (OOemg) and phenol red threads, respectively. The background activity at 34 °C and the cooling- and heating-evoked responses of the cold thermoreceptors were similar in WT and TRPA1-KO animals, no matter the age. Similar to the aged WT mice, in the young and aged TRPA1-KO mice, most of the cold thermoreceptors presented low frequency background activity, a low cooling threshold, and a sluggish response to heating. The amplitude and duration of the OOemg signals correlated with the magnitude of the induced thermal change in the WT but not in the TRPA1-KO mice. The basal tearing was similar in the TRPA1-KO and WT mice. The electrophysiological data suggest that the TRPA1-dependent nerve activity, which declines with age, contributes to detecting the warming of the ocular surface and also to integrating the thermally-evoked reflex blink.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.