Under salt stress conditions, plant growth is reduced due to osmotic, nutritional and oxidative imbalance. However, salicylic acid acts in the mitigation of this abiotic stress by promoting an increase in growth, photosynthesis, nitrogen metabolism, synthesis of osmoregulators and antioxidant enzymes. In this context, the objective was to evaluate the effect of salicylic acid doses on the growth and physiological changes of eggplant seedlings under salt stress. The experiment was conducted in a greenhouse, where the treatments were distributed in randomized blocks using a central composite matrix Box with five levels of electrical conductivity of irrigation water (CEw) (0.50; 1.08; 2.50; 3.92 and 4.50 dS m-1), associated with five doses of salicylic acid (SA) (0.00; 0.22; 0.75; 1.28 and 1.50 mM), with four repetitions and each plot composed of three plants. At 40 days after sowing, plant height, stem diameter, number of leaves, leaf area, electrolyte leakage, relative water content, and total dry mass were determined. ECw and SA application influenced the growth and physiological changes of eggplant seedlings. Increasing the ECw reduced growth in the absence of SA. Membrane damage with the use of SA remained stable up to 3.9 dS m-1 of ECw. The relative water content independent of the CEw increased with 1.0 mM of SA. The use of SA at the concentration of 1.0 mM mitigated the deleterious effect of salinity on seedling growth up to 2.50 dS m-1 of ECw.
Aims:The present study aimed to assess the alleviating effect of silicon in salinity on melon growth. Study Design: The experimental design was in randomised blocks, corresponding to the with four salt levels and three doses of silicon.
The use of edible coating has been an alternative to maintain the quality of vegetables and prolong their post-harvest life. This study aims to evaluate bioactive compounds in Spondias tuberosa submitted to different coating formulations based on Chlorella sp. associated with the pomegranate seed oil, to establish the one that best maintains post-harvest quality. The experiment was set in a completely randomized design, in a 5 × 6 factorial scheme, represented by five coating techniques (T1 = control; T2 = 0.5% Chlorella sp.; T3 = 1% Chlorella sp.; T4 = 1.5% Chlorella sp.; T5 = 2% Chlorella sp.), using 0.3% of pomegranate seed oil in coatings, during five evaluation periods (0, 1, 2, 3, 4 and 5 days), stored in BOD incubator at 24 ± 2 °C and 85 ± 5% RH, with three replicates of ten fruits per plot. Chlorella sp. associated with pomegranate seed oil produced a modified atmosphere around the fruit, retarding the ripening process. Coatings preserved the content of ascorbic acid and phenolic compounds. The treatment containing 2.0% of Chlorella sp. associated with pomegranate seed oil provided the best maintenance for fruit quality.
The salinity in irrigation water is one of the most important causes to decline cultivated plants yield. The H2O2 application has shown efficiency as a stimulator and activator for antioxidative defense system in plants submitted to biotic and abiotic stresses. The objective of this study was to evaluate methods for hydrogen peroxide application as a strategy to minimize the effects of saline stress on melon plants. The experiment was designed in complete randomized blocks and set in 2 × 4 factorial scheme, consisting two levels for irrigation water salinity (S1 = 0.3 and S2 = 2.0 dS m-1) and four methods for hydrogen peroxide application (15 mM), (T1 = no peroxide application, T2= imbibition of seeds, T3 = at sowing, T4 = Foliar spraying), with five repetitions. It was evaluated the following variables at 58 days after transplanting: plant height, stem diameter, number of leaves, number of flowers, shoot dry mass, root dry mass and total dry mass. The results showed that salinity affected the growth, biomass accumulation and plant quality severely, with the highest losses promoted by the electrical conductivity of 2.0 dS m-1.
Hydrogen peroxide (H2O2) is a molecule that can flag plants under biotic and abiotic stress conditions. Among the kinds of stress, the salinity stress is the one that most usually affects plants. Consequently, the purpose hereof was to use hydrogen peroxide (H2O2) to mitigate the possible harmful effects of salinity in yellow passion fruit seedlings. We employed a randomized block design, in a 5 × 3 factorial scheme, corresponding to five irrigation water electric conductivity levels (0.3; 1.3; 2.3; 3.3; and 4.3 dS m-1) and three hydrogen peroxide concentrations (0; 5; and 15 μmol L-1), with four repetitions. The treatments were applied foliarly 7 and 15 days after the seedlings’ germination with hand sprayers. Sixty days after sowing, we evaluated the seedlings’ growth and quality variables, which finally proved that hydrogen peroxide mitigates the harmful effect of the irrigation water’s salinity up to 2 dS m-1 in the growth of yellow passion fruit seedlings at the concentration of 5 μmol/L. Nonetheless, excessive concentrations (15 μmol L-1) associated with high salt concentrations were proven detrimental to the seedlings’ phenological growth and quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.