The solution to the Strong CP problem is analysed within the Minimal Flavour Violation (MFV) context. An Abelian factor of the complete flavour symmetry of the fermionic kinetic terms may play the role of the Peccei-Quinn symmetry in traditional axion models. Its spontaneous breaking, due to the addition of a complex scalar field to the Standard Model scalar spectrum, generates the MFV axion, which may redefine away the QCD theta parameter. It differs from the traditional QCD axion for its couplings that are governed by the fermion charges under the axial Abelian symmetry. It is also distinct from the so-called Axiflavon, as the MFV axion does not describe flavour violation, while it does induce flavour non-universality effects. The MFV axion phenomenology is discussed considering astrophysical, collider and flavour data.
Light axions can potentially leave a cosmic background, just like neutrinos. We complete the study of thermal axion production across the electroweak scale by providing a smooth and continuous treatment through the two phases. Focusing on both flavor conserving and violating couplings to third generation quarks, we compute the amount of axions produced via scatterings and decays of thermal bath particles. We perform a model independent analysis in terms of axion effective couplings, and we also make predictions for specific microscopic QCD axion scenarios. This observable effect, parameterized as it is conventional by an effective number of additional neutrinos, is above the 1σ sensitivity of future CMB-S4 surveys. Moreover, if one assumes no large hierarchies among dimensionless axion couplings to standard model particles, future axion helioscopes will provide a complementary probe for the parameter region we study.
The recent electron recoil excess observed by XENON1T has a possible interpretation in terms of solar axions coupled to electrons. If such axions are still relativistic at recombination they would also leave a cosmic imprint in the form of an additional radiation component, parameterized by an effective neutrino number ∆N eff . We explore minimal scenarios with a detectable signal in future CMB surveys: axions coupled democratically to all fermions, axion-electron coupling generated radiatively, the DFSZ framework for the QCD axion. The predicted ∆N eff is larger than 0.03-0.04 for all cases, close to the 2σ forecasted sensitivity of CMB-S4 experiments. This opens the possibility of testing with cosmological observations the solar axion interpretation of the XENON1T excess.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.