Protein S-acylation is a dynamic lipid post-translational modification that can modulate the localization and activity of target proteins. In humans, the installation of the lipid onto target proteins is catalyzed by a family of 23 Asp-His-His-Cys domain-containing protein acyltransferases (DHHC-PATs). DHHCs are increasingly recognized as critical players in cellular signaling events and in human disease. However, progress elucidating the functions and mechanisms of DHHC "writers" has been hampered by a lack of chemical tools to perturb their activity in live cells. Herein, we report the synthesis and characterization of cyano-myracrylamide (CMA), a broad-spectrum DHHC family inhibitor with similar potency to 2-bromopalmitate (2BP), the most commonly used DHHC inhibitor in the field. Possessing an acrylamide warhead instead of 2BP's α-halo fatty acid, CMA inhibits DHHC family proteins in cellulo while demonstrating decreased toxicity and avoiding inhibition of the S-acylation eraser enzymes -two of the major weaknesses of 2BP. Our studies show that CMA engages with DHHC family proteins in cells, inhibits protein S-acylation, and disrupts DHHC-regulated cellular events. CMA represents an improved chemical scaffold for untangling the complexities of DHHC-mediated cell signaling by protein S-acylation.
File list (2)download file view on ChemRxiv SA8_V28 changes accepted.pdf (16.08 MiB) download file view on ChemRxiv SI_Revision4.pdf (37.14 MiB)
A simple and flexible approach to 3-pyrrolin-2-one fused carbazoles is disclosed. The key step involves the BF3-mediated electrophilic substitution of indoles with N-alkyl-substituted 3-aryltetramic acids, which provides access to indole-substituted 3-pyrrolin-2-ones. Scholl-type oxidative cyclizations of these materials led to the formation of the corresponding 3-pyrrolin-2-one-fused benzo[a]carbazoles and indolo[2,3-a]carbazoles. This work represents the first synthesis of the benzo[a]pyrrolo[3,4-c]carbazol-3(8H)-one ring system, while the indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one ring system is found in a number of biologically active compounds including the protein kinase C (PKC) inhibitor, staurosporine.
Analogs containing a central 3-pyrrolin-2-one core with different methoxyphenyl and/or indole substituents were prepared and tested for anti-proliferative activity in U-937 cells. The most efficacious analogs were non-rigid, (non-fused) contained methoxyaryl groups located at the 4-position, and contained either methoxyaryl or indole groups located at the 3-position. Both the number of methoxy groups contained in the substituents and the particular location of the indole rings with respect to the lactam carbonyl had significant affects on anti-proliferative activity. This work provides a framework to better understand structure-activity relationships for inducing anti-proliferative activity in diaryl heterocyclic scaffolds.
The electrophilic substitution of indoles with tetronic acid and N-acetyltetramic acid mediated by BF 3 •OEt 2 was investigated. This strategy allowed for the preparation of nine indole-substituted furan-2ones (indolyl-γ-lactones) and 3-pyrrolin-2-ones (indolyl-γ-lactams) and is more straightforward than previously reported synthetic methods. During the course of our investigation, we also discovered a facile synthesis of tetronates and a tetramate via a BF 3 -mediated addition of alcohols to tetronic acid and N-acetyltetramic acid, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.