We evaluated the beneficial effect of treatment with bone marrow mononuclear cells(BMMC) in a rat model of focal ischemia induced by thermocoagulation of the blood vessels in the left sensorimotor cortex. BMMC were obtained from donor rats and injected into the femoral vein one day after ischemia. BMMC-treated animals received approx. 3×10⁷ cells and control animals received PBS. Animals were evaluated for functional sensorimotor recovery weekly with behavioral tests and for changes in neurodegeneration and structural plasticity with histochemical and immunostaining techniques, respectively. The BMMC-treated group showed a significant recovery of function in the cylinder test 14, 21 and 28 days after ischemia. In the beam test, both groups showed improvement, with a tendency for faster recovery in the BMMC-treated group. In the adhesive test, both groups did not show significant recovery of function. FJC+ cell counting revealed significant decrease in the neurodegeneration in the periphery of the lesion in the BMMC-treated group. The analyses by immunoblotting revealed no significant difference in the expression of GAP-43 and synaptophysin between the groups. Thus, our results showed beneficial effects of the treatment with BMMC, which promoted significant functional recovery and decreased neurodegeneration. These results suggest that the therapy with BMMC is effective and might be a protocol of treatment for stroke in humans, alternative to the therapy proposed with the bone marrow-derived mesenchymal stem cells.
Neurological and cognitive impairment persist in more than 20% of cerebral malaria (CM) patients long after successful anti-parasitic treatment. We recently reported that long term memory and motor coordination deficits are also present in our experimental cerebral malaria model (ECM). We also documented, in a murine model, a lack of obvious pathology or inflammation after parasite elimination, suggesting that the long-term negative neurological outcomes result from potentially reversible biochemical and physiological changes in brains of ECM mice, subsequent to acute ischemic and inflammatory processes. Here, we demonstrate for the first time that acute ECM results in significantly reduced activation of protein kinase B (PKB or Akt) leading to decreased Akt phosphorylation and inhibition of the glycogen kinase synthase (GSK3β) in the brains of mice infected with Plasmodium berghei ANKA (PbA) compared to uninfected controls and to mice infected with the non-neurotrophic P. berghei NK65 (PbN). Though Akt activation improved to control levels after chloroquine treatment in PbA-infected mice, the addition of lithium chloride, a compound which inhibits GSK3β activity and stimulates Akt activation, induced a modest, but significant activation of Akt in the brains of infected mice when compared to uninfected controls treated with chloroquine with and without lithium. In addition, lithium significantly reversed the long-term spatial and visual memory impairment as well as the motor coordination deficits which persisted after successful anti-parasitic treatment. GSK3β inhibition was significantly increased after chloroquine treatment, both in lithium and non-lithium treated PbA-infected mice. These data indicate that acute ECM is associated with abnormalities in cell survival pathways that result in neuronal damage. Regulation of Akt/GSK3β with lithium reduces neuronal degeneration and may have neuroprotective effects in ECM. Aberrant regulation of Akt/GSK3β signaling likely underlies long-term neurological sequelae observed in ECM and may yield adjunctive therapeutic targets for the management of CM.
Aim To investigate the association between vasculopathy and survival during experimental cerebral malaria (ECM), and to determine whether targeting the endothelin-1 (ET-1) pathway alone or in combination with the anti-malaria drug artemether (a semi-synthetic derivative of artemisinin) will improve microvascular hemorrhage and survival. Main Methods C57BL/6 mice infected with Plasmodium berghei ANKA (PbA) were randomly assigned to four groups: no treatment, artemether treated, ETA receptor antagonist (HJP-272) treated, or HJP-272 and artemether treated. The uninfected control mice were treated with HJP-272 and artemether. We analyzed survival, cerebral hemorrhage, weight change, blood glucose levels and parasitemia. Key Findings Our studies demonstrated decreased brain hemorrhage in PbA-infected (ECM) mice treated when HJP-272, a 1,3,6-trisubstituted-2-carboxy-quinol-4-one novel ETA receptor antagonist synthesized by our group, is used in conjunction with artemether, an anti-malarial agent. In addition, despite adversely affecting parasitemia and weight in non-artemether treated infected mice, HJP-272, seemed to confer some survival benefit when used as adjunctive therapy, though this did not reach significance. Significance Previous studies demonstrate that the endothelin pathway is associated with vasculopathy, neuronal injury and inflammation in ECM. As demonstrated here, components of the ET-1 pathway may be important targets for adjunctive therapy in ECM, and may help in preventing hemorrhage and in improving survival when used as adjunctive therapy during malaria infection. The data presented suggest that our novel agent, HJP-272, may ameliorate alterations in the vasculature which can potentially lead to inflammation, neurological dysfunction, and subsequent death in mice with ECM.
Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA) antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria.
Introduction Acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19) often leads to mortality. Outcomes of patients with COVID-19-related ARDS compared to ARDS unrelated to COVID-19 is not well characterized. Areas covered We performed a systematic review of PubMed, Scopus, and MedRxiv 11/1/2019 to 3/1/2021, including studies comparing outcomes in COVID-19-related ARDS (COVID-19 group) and ARDS unrelated to COVID-19 (ARDS group). Outcomes investigated were duration of mechanical ventilation-free days, intensive care unit (ICU) length-of-stay (LOS), hospital LOS, and mortality. Random effects models were fit for each outcome measure. Effect sizes were reported as pooled median differences of medians (MDMs), mean differences (MDs), or odds ratios (ORs). Expert opinion Ten studies with 2,281 patients met inclusion criteria (COVID-19: 861 [37.7%], ARDS: 1420 [62.3%]). There were no significant differences between the COVID-19 and ARDS groups for median number of mechanical ventilator-free days (MDM: −7.0 [95% CI: −14.8; 0.7], p = 0.075), ICU LOS (MD: 3.1 [95% CI: −5.9; 12.1], p = 0.501), hospital LOS (MD: 2.5 [95% CI: −5.6; 10.7], p = 0.542), or all-cause mortality (OR: 1.25 [95% CI: 0.78; 1.99], p = 0.361). Compared to the general ARDS population, results did not suggest worse outcomes in COVID-19-related ARDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.