It has been recognized that the stress-related peptides are involved in anxiety states. Angiotensin II receptor blockade by systemic administration of the AT(1) receptor antagonists has been proposed as a new treatment possibility for anxiety disorders. For better understanding of the related mechanisms, in this study we evaluated effects of bilateral intraamygdaloid injections of 2 (LOS 2) and 4 (LOS 4) μg of losartan (LOS), a selective AT(1) receptor antagonist, on the behavior of the not stressed and acutely stressed rats in an elevated "plus" maze. Under non-stress conditions, LOS 4 increased time spent in the open arms (p < 0.01), number of extreme open arm arrivals (p < 0.05), time per entry (p < 0.01), and the number of total arm entries (p < 0.05) showing thus considerable anxiolytic activity. The open arm extreme arrivals were increased by LOS 4 in both not stressed (p < 0.05) and stressed (p < 0.05) rats. When no stressed and stressed LOS 4 animals were compared, time per entry and the number of closed arm entries (p < 0.05, both) were decreased in the latter group. Moreover, the LOS 4 stressed rats had significantly increased open/closed arm quotient (p < 0.05) as compared to the both control and LOS 4 non-stress group (p < 0.05, both). These findings suggest that the AT(1) receptor blockade in amygdala is important for the anxiolytic action of LOS (and probably other AT(1) receptor blockers) under both non-stress and stress conditions.
Abstract:Background: The effect of the agonism on g-aminobutyric acid (GABA) receptors was studied within medial prefrontal cortex (mPFC), amygdala (AMY) and ventral hipocampus (VH) in the plus-maze test in male rats bilaterally cannulated. These structures send glutamatergic projections to the nucleus accumbens septi (NAS), in which interaction and integration between these afferent pathways has been described. In a previous study of our group, blockade of glutamatergic transmission within NAS induced an anxiolytic like effect. Methods: Three rat groups received either saline or dipotassium chlorazepate (1 or 2 µg/1 µl solution) 15 min before testing. Time spent in the open arms (TSOA), time per entry (TPE), extreme arrivals (EA), open and closed arms entries (OAE, CAE) and relationship between open-and closed-arms quotient (OCAQ) were recorded. Results: In the AMY injected group TSOA, OAE and EA were increased by the higher doses of dipotassium chlorazepate (p < 0.01). In the mPFC, TPE was decreased by both doses (p < 0.05). Injection within ventral hippocampus (VH) decreased TSOA, OAE and OCAQ with lower doses (p < 0.05). When the three studied saline groups were compared, TSOA, OAE, EA and OCAQ were enhanced in the VH group when compared to mPFC and AMY (p < 0.001). Insertion of inner canula (p < 0.001, p < 0.01, p < 0.01) and saline injection showed an increasing significant difference (p < 0.001 in all cases) with the action of guide cannula alone within VH in TSOA, OAE and EA. Conclusion: We conclude that the injection of dipotassium chlorazepate has a differential effect depending of the brain area, leading to facilitatory and inhibitory effects on anxiety processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.