There is a critical need to improve our understanding of the pathogenesis of melanoma brain metastases (MBM). Thus, we performed RNA sequencing on 88 resected MBMs and 42 patient-matched extracranial metastases; tumors with suffi cient tissue also underwent wholeexome sequencing, T-cell receptor sequencing, and IHC. MBMs demonstrated heterogeneity of immune infi ltrates that correlated with prior radiation and post-craniotomy survival. Comparison with patientmatched extracranial metastases identifi ed signifi cant immunosuppression and enrichment of oxidative phosphorylation (OXPHOS) in MBMs. Gene-expression analysis of intracranial and subcutaneous xenografts, and a spontaneous MBM model, confi rmed increased OXPHOS gene expression in MBMs, which was also detected by direct metabolite profi ling and [U-13 C]-glucose tracing in vivo. IACS-010759, an OXPHOS inhibitor currently in early-phase clinical trials, improved survival of mice bearing MAPK inhibitor-resistant intracranial melanoma xenografts and inhibited MBM formation in the spontaneous MBM model. The results provide new insights into the pathogenesis and therapeutic resistance of MBMs. SIGNIFICANCE: Improving our understanding of the pathogenesis of MBMs will facilitate the rational development and prioritization of new therapeutic strategies. This study reports the most comprehensive molecular profi ling of patient-matched MBMs and extracranial metastases to date. The data provide new insights into MBM biology and therapeutic resistance.
Combined MEK and CDK4/6 inhibition (MEKi + CDK4i) has shown promising clinical outcomes in patients with -mutant melanoma. Here, we interrogated longitudinal biopsies from a patient who initially responded to MEKi + CDK4i therapy but subsequently developed resistance. Whole-exome sequencing and functional validation identified an acquired mutation as conferring drug resistance. We demonstrate that preexisted in a rare subpopulation that was missed by both clinical and research testing, but was revealed upon multiregion sampling due to being nonuniformly distributed. This resistant population rapidly expanded after the initiation of MEKi + CDK4i therapy and persisted in all successive samples even after immune checkpoint therapy and distant metastasis. Functional studies identified activated S6K1 as both a key marker and specific therapeutic vulnerability downstream of -induced resistance. These results demonstrate that difficult-to-detect preexisting resistance mutations may exist more often than previously appreciated and also posit S6K1 as a common downstream therapeutic nexus for the MAPK, CDK4/6, and PI3K pathways. We report the first characterization of clinical acquired resistance to MEKi + CDK4i, identifying a rare preexisting subpopulation that expands upon therapy and exhibits drug resistance. We suggest that single-region pretreatment biopsy is insufficient to detect rare, spatially segregated drug-resistant subclones. Inhibition of S6K1 is able to resensitize PIK3CA-expressing NRAS-mutant melanoma cells to MEKi + CDK4i. .
PURPOSE Intrahepatic cholangiocarcinoma (IHCCA), a global health problem, is increasing in incidence and has differing etiologies worldwide. Next-generation sequencing (NGS) is rapidly being incorporated into the clinical management of biliary cancers. IHCCA is enriched with actionable mutations, and there are several promising targeted therapies under development. NGS data from Asia, where IHCCA is most prevalent, are limited. METHODS Comprehensive genomic profiling of formalin-fixed paraffin-embedded tumor tissue from 164 Asian and 283 Western patients with IHCCA was performed using NGS. We measured the distribution of DNA repair genetic aberrations (GAs) in IHCCA, along with actionable mutations. Also, we evaluated the association between DNA repair GAs and tumor mutation burden (TMB). Based on the TMB status, patients were distinguished into 3 levels: low (< 6 mut/Mb), intermediate (6-10 mut/Mb), and high (TMB-H; ≥ 10 mut/Mb). RESULTS Seventy-two percent of Asian patients had ≥ 1 actionable GA, with a significantly higher frequency in KMT2C , BRCA1/2, and DDR2 compared with Western patients ( P = .02, .003, and .003, respectively); 60.9% of Western patients had ≥ 1 actionable GA and higher frequency of CDKN2A/B and IDH1/2 GAs ( P = .0004 and < .001, respectively). GAs in nuclear factor kappa B pathway regulators and DNA repair genes occurred more frequently in Asian patients ( P = .006 and .001, respectively). There was a higher frequency of TMB-H in Asian compared with the Western cohort (12.2% v 5.9%; P = .07). CONCLUSION A higher burden of DNA repair mutations and frequency of patients with TMB-H in the Asian IHCCA cohort compared with the Western patients suggests a potential role for DNA repair and immune checkpoint inhibitors in the Asian population. Future clinical trials should account for this genetic heterogeneity.
BackgroundTo date, no systemic therapy, including immunotherapy, exists to improve clinical outcomes in metastatic uveal melanoma (UM) patients. To understand the role of immune infiltrates in the genesis, metastasis, and response to treatment for UM, we systematically characterized immune profiles of UM primary and metastatic tumors, as well as samples from UM patients treated with immunotherapies.MethodsRelevant immune markers (CD3, CD8, FoxP3, CD68, PD-1, and PD-L1) were analyzed by immunohistochemistry on 27 primary and 31 metastatic tumors from 47 patients with UM. Immune gene expression profiling was conducted by NanoString analysis on pre-treatment and post-treatment tumors from patients (n=6) receiving immune checkpoint blockade or 4-1BB and OX40 dual costimulation. The immune signature of UM tumors responding to immunotherapy was further characterized by Ingenuity Pathways Analysis and validated in The Cancer Genome Atlas data set.ResultsBoth primary and metastatic UM tumors showed detectable infiltrating lymphocytes. Compared with primary tumors, treatment-naïve metastatic UM showed significantly higher levels of CD3+, CD8+, FoxP3+ T cells, and CD68+ macrophages. Notably, levels of PD-1+ infiltrates and PD-L1+ tumor cells were low to absent in primary and metastatic UM tumors. No metastatic organ-specific differences were seen in immune infiltrates. Our NanoString analysis revealed significant differences in a set of immune markers between responders and non-responders. A group of genes relevant to the interferon-γ signature was differentially up-expressed in the pre-treatment tumors of responders. Among these genes, suppressor of cytokine signaling 1 was identified as a marker potentially contributing to the response to immunotherapy. A panel of genes that encoded pro-inflammatory cytokines and molecules were expressed significantly higher in pre-treatment tumors of non-responders compared with responders.ConclusionOur study provides critical insight into immune profiles of UM primary and metastatic tumors, which suggests a baseline tumor immune signature predictive of response and resistance to immunotherapy in UM.
The efficacy of crotamine as antitumoral was first demonstrated by daily intraperitoneal (IP) injections of low doses of this toxin in an animal model bearing melanoma tumors. Significant inhibition of tumor growth and increased lifespan of mice bearing tumor was also noticed after 21 consecutive days of this daily IP administration of crotamine. However, due to the limited acceptance of treatments by IP route in clinical conditions, herein, we evaluated the antitumor effect of this native polypeptide employing the oral route. The efficacy of crotamine in inhibiting the melanoma growth in vivo, even after passing through the gastrointestinal tract of the animal, was confirmed here. In addition, biochemical biomarkers and also histopathological analysis showed both the absence of any potential toxic effects in tissues or organs of the animal in which the highest accumulation of crotamine is expected. Interestingly, a reduction of weight gain was observed mainly in animals with tumor treated with crotamine by IP route, but not by oral administration. Albeit, oral administered crotamine was able to significantly decrease the body weight gain of healthy animals without tumor. Taking advantage of this same experimental animal models receiving crotamine by oral route, it was possible to show metabolic changes as the increased capacity of glucose clearance, which was accompanied by a reduction of the total cholesterol, and by increased high-density lipoprotein levels, both observed mainly in the absence of tumor. Triglycerides and low-density lipoprotein were also significantly decreased, but only in the absence of tumor. Taken together, these data suggest a clear trend for metabolic positive effects and mischaracterize unhealthy condition of animals, with or without tumors, treated with crotamine for 21 days. In addition, this study confirmed the efficacy of crotamine administered by oral route as antitumor agent, which besides the additional advantage of administration convenience and decreased risk of toxic effects, allowed the serendipitous observation of several positive metabolic effects on treated animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.