In this paper, we propose to study voltage controlled oscillators (VCOs) based on the equivalence with pulse frequency modulators (PFMs). This approach is applied to the analysis of VCO-based analog-to-digital converters (VCO-ADCs) and deviates significantly from the conventional interpretation, where VCO-ADCs have been described as the first-order modulators. A first advantage of our approach is that it unveils systematic error components not described by the equivalence with a conventional modulator. A second advantage is that, by a proper selection of the pulses generated by the PFM, we can theoretically construct an open loop VCO-ADC with an arbitrary noise shaping order. Unfortunately, with the exception of the firstorder noise shaping case, the required pulse waveforms cannot easily be implemented on the circuit level. However, we describe circuit techniques to achieve a good approximation of the required pulse waveforms, which can easily be implemented by practical circuits. Finally, our approach enables a straightforward description of multistage modulator architectures, which is an alternative and practically feasible way to realize a VCO-ADC with extended noise shaping.
This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.