Pigs representing two crossbred genotypes, a breeding company hybrid (BCH) and a three breed cross (Hampshire x [Yorkshire x Duroc]) (HYD) were evaluated at five slaughter weights (SLW): 100, 115, 130, 145, and 160 kg. A total of 160 pigs were grown in like-sex (barrows [B] or gilts [G]), like-genotype groups, with four pigs/group, from 60 kg live weight. A corn-soybean meal-based diet was available on an ad libitum basis (15.8% crude protein, 3,300 kcal/kg ME). One-half of the pigs from each group (80 pigs) were slaughtered for carcass and meat quality evaluation. Genotype BCH grew faster, had lower backfat depths in the loin and lumbar regions, and a smaller loin eye area than HYD, but both groups had a similar gain:feed ratio. Few consistent genotype differences in cutting and curing yields and meat quality were observed. Differences between sexes for growth and carcass traits were generally in agreement with previous research; however, the magnitude of the differences was small. There were few nonlinear regressions involving SLW and limited differences between genotypes or sexes in the slopes of the linear regressions. Increases in SLW were associated with increases in feed intake, backfat depth and loin' eye area, and minimal changes in growth rate or gain:feed. Percentage of loin increased and ham, shoulder, and spare rib percentages decreased with slaughter weight. The weight of trimmed, boneless cuts increased with slaughter weight, but percentage trimmed, boneless cuts was reduced. Curing yields for belly increased with slaughter weight. Changes in meat quality with increasing slaughter weight were relatively small. Longissimus lumborum fat content increased and moisture content decreased with slaughter weight. These results suggest that modern genotypes can be slaughtered at live weights up to 160 kg with limited impact on growth performance, commercial meat yields, or meat quality characteristics.
1996). The inuence of short-term feeding of amino acid-decient diets and high dietary leucine levels on the intramuscular fat content of pig muscle. AbstractThe objective of the study was to investigate the influence of amino acid-deficient diets and high dietary leucine levels offered for intervals of either 21 or 35 days pre-slaughter on the intramuscular fat content of pig muscle. Twenty-four hybrid gilts were offered individually ad libitum one of four diets that comprised combinations of amino acid levels (supplemented or deficient: 5-6 v. 4-0 g lysine per kg) and low or high leucine levels (10-3 v. 30-3 g leucine per kg). Live weights at the start of the study were 74-5 and 87-0 kg for pigs on the 35-and 21-day feeding regimens, respectively. There were no significant effects of dietary amino acid level, leucine level, or feeding interval on food intake, daily live-weight gain or food efficiency. Pigs given the amino acid-deficient diets had lower killing-out proportions (736 v. 747 (s.e. 3-4) g/kg; P < 0-05) and longissimus dorsi muscle areas (32-6 v. 35-7 (s.e. 0-71) cm 2 , P < 0-01) than those given amino acid-supplemented diets. Subjective score for longissimus dorsi colour indicated that pigs on the high leucine diet had darker muscle than those on the low leucine diet. Intramuscular fat contents of the longissimus dorsi muscle at the Wth/llth rib and the 3rd/4th lumbar vertebra and of the semimembranosus muscle were increased by 19,18 and 18 g/kg, respectively (P < 0-05), for pigs given amino acid-deficient compared with those given amino acid-supplemented diets. Dietary leucine level had no significant effect on intramuscular fat level. Pigs given the diets for 35, compared with 21, days had higher fat levels in the semimembranosus muscle (52 v. 30 (s.e. 5-2) g/kg; P < 0-01) but not in the other two muscle locations studied. This study suggests that relatively short-term feeding of amino acid-deficient diets can produce substantial increases in intramuscular fat levels.
Live animal real-time ultrasound scans and carcass measures were taken on 80 pigs comprising two sexes (42 barrows; 38 gilts) and two halothane genotypes (40 carriers and 40 negatives) that were slaughtered between 108 and 148 kg live weight. Transverse scans (TRUS), at right angles to the midline, were taken on right (RS) and left (LS) sides at the last rib. Longitudinal scans (LON) were taken 6.5 cm off the midline immediately anterior (ANT) and posterior (PST) to the last rib on both the RS and LS. Longissimus muscle depth and area and backfat thickness over the longissimus muscle were measured on TRUS. Backfat thickness and longissimus muscle depth were measured at each end of the LON. Backfat thickness and longissimus muscle measurements were taken at the 10th and last rib on the RS of the carcass. Carcasses were fabricated using standard techniques to establish lean cut yields and carcass soft tissue was chemically analyzed to determine fat-free lean contents. Stepwise regression analysis was performed to develop equations to predict the weights and percentages of lean cuts and fat-free lean. Fat and muscle measures taken from ultrasound scans were generally less accurate than last rib carcass measures at predicting composition. There was little difference in R2 for equations based on either TRUS or ANT/LON; however, PST/LON, generally, were less accurate than ANT/LON. Combining measurements from more than one scan gave little improvement in R2 compared with the best single scan. Estimates of sex bias for carcass composition prediction were small. Halothane genotype and carcass lean content biases were detected; equations derived from the pooled data tended to overestimate the lean content of negative pigs and fatter carcasses and underestimate the lean content of carrier animals and leaner carcasses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.