Zika virus (ZIKV) is an emerging virus involved in recent outbreaks in Brazil. The association between the virus and Guillain-Barré syndrome (GBS) or congenital disorders has raised a worldwide concern. In this work, we investigated a rare Zika case, which was associated with GBS and spontaneous retained abortion. Using specific anti-ZIKV staining, the virus was identified in placenta (mainly in Hofbauer cells) and in several fetal tissues, such as brain, lungs, kidneys, skin and liver. Histological analyses of the placenta and fetal organs revealed different types of tissue abnormalities, which included inflammation, hemorrhage, edema and necrosis in placenta, as well as tissue disorganization in the fetus. Increased cellularity (Hofbauer cells and TCD8+ lymphocytes), expression of local pro-inflammatory cytokines such as IFN-γ and TNF-α, and other markers, such as RANTES/CCL5 and VEGFR2, supported placental inflammation and dysfunction. The commitment of the maternal-fetal link in association with fetal damage gave rise to a discussion regarding the influence of the maternal immunity toward the fetal development. Findings presented in this work may help understanding the ZIKV immunopathogenesis under the rare contexts of spontaneous abortions in association with GBS.
Background Neurological and other systemic complications occur in adults with severe COVID-19. Here we describe SARS-CoV-2 infection complicated by neuroinvasion in the post-mortem tissues of a child. Methods We performed a complete autopsy of a 14-month-old child who died of COVID-19 pneumonitis. Histological sections of multiple organs were stained with haematoxylin and eosin. Luxol fast blue staining for myelin and immunohistochemistry were performed in selected areas of the brain. The presence of SARS-CoV-2 was investigated by immunostaining with anti-spike protein antibody and by RT-qPCR. Findings Lesions included microthrombosis, pulmonary congestion, interstitial oedema, lymphocytic infiltrates, bronchiolar injury, collapsed alveolar spaces, cortical atrophy, and severe neuronal loss. SARS-CoV-2 staining was observed along the apical region of the choroid plexus (ChP) epithelium and in ependymal cells of the lateral ventricle, but was restricted to ChP capillaries and vessels in some regions. SARS-CoV-2 infection of brain tissue was confirmed by RT-qPCR in fragments of the ChP, lateral ventricle, and cortex. Interpretation Our results show multisystemic histopathological alterations caused by SARS-CoV-2 infection and contribute to knowledge regarding the course of fatal COVID-19 in children. Furthermore, our findings of ChP infection and viral neurotropism suggest that SARS-CoV-2 may invade the central nervous system by blood-cerebrospinal fluid barrier disruption. Funding Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ); the National Council for Scientific and Technological Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES), in addition to intramural grants from D'Or Institute for Research and Education. Resumo Complicações sistêmicas e neurológicas foram descritas em adultos com COVID-19 grave. Neste trabalho, descrevemos a infecção por SARS-CoV-2, incluindo sua neuroinvasão, nos tecidos post-mortem de uma criança. Métodos Realizamos a autópsia completa de uma criança de 14 meses que morreu de pneumonite por COVID-19. Cortes histológicos de múltiplos órgãos foram corados com Hematoxilina e Eosina. A coloração de Luxol Fast Blue para mielina e imuno-histoquímica foram realizadas em áreas selecionadas do cérebro. A presença de SARS-CoV-2 foi investigada por imunomarcação com anticorpo anti-proteína spike e por RT-qPCR. Achados As lesões incluíram microtrombose, congestão pulmonar, edema intersticial, infiltrados linfocíticos, lesão bronquiolar, colapso dos espaços alveolares, atrofia cortical e perda neuronal grave. A presença de SARS-CoV-2 foi observada ao longo da região apical do epitélio do plexo coróide (PC) e nas células ependimárias do ventrículo...
During Schistosoma mansoni infection, there is morphological evidence of involvement of various hematopoietic growth factors, which cause eosinophil, neutrophil, megakaryocytic and erythroid extramedullary foci in the liver, lymph nodes and omental and mesenteric milky spots. While the eosinophil metaplasia in the periphery of hepatic granulomas roughly reproduced the intensity of the medullary eosinopoiesis, the neutrophil metaplasia, on the contrary, was more intense during the period of neutrophil depression in the bone marrow. This fact suggests that extramedullary hematopoietic foci are locally regulated, and amplify and/or compensate the systemic hematopoietic response during the infection.
A Síndrome de Bloch-Sulzberger (Incontinência Pigmentar) é uma genodermatose rara, que afeta, principalmente, o sexo feminino, pois costuma ser letal em pacientes do sexo masculino intraútero. Caracteriza-se, principalmente, pelas manifestações dermatológicas, podendo também apresentar anomalias dentárias, oftalmológicas e neurológicas. As lesões cutâneas apresentam 4 fases distintas: vesiculosa, verrucosa, pigmentar e atrófica; que podem seguir uma sequência irregular, havendo até sobreposição das mesmas
Coronavirus disease 2019 (COVID-19) was initially characterized as a respiratory illness. Neurological manifestations were reported mostly in severely affected patients. Routes for brain infection and the presence of virus particles in situ have not been well described, raising controversy about how the virus causes neurological symptoms. Here, we report the autopsy findings of a 1-year old infant with COVID-19. In addition to pneumonitis, meningitis and multiple organ damage related to thrombosis, a previous encephalopathy may have contributed to additional cerebral damage. SARS-CoV-2 infected the choroid plexus, ventricles, and cerebral cortex. This is the first evidence of SARS-CoV-2 detection in an infant post-mortem brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.