Intracellular Toll-like receptor 3 (TLR3), TLR7, and TLR9 localize in endosomes and recognize single-stranded RNA and nucleotides from viruses and bacteria. This interaction induces their conformational changes resulting in the production of proinflammatory cytokines and upregulation of cell surface molecules. TLR9 requires a proteolytic cleavage for its signaling. Here, we report that myeloid and plasmacytoid dendritic cells (DCs) deficient for the asparagine endopeptidase (AEP), a cysteine lysosomal protease, showed a decrease in the secretion of proinflammatory cytokines in response to TLR9 stimulation in vitro and in vivo. Upon stimulation, full-length TLR9 was cleaved into a 72 kDa fragment and this processing was strongly reduced in DCs lacking AEP. Processed TLR9 coeluted with the adaptor molecule MyD88 and AEP after size exclusion chromatography. When expressed in AEP-deficient DCs, the 72 kDa proteolytic fragment restored TLR9 signaling. Thus, our results identify an endocytic protease playing a critical role in TLR processing and signaling in DCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.