The transcription factor Twist1 has been reported to be essential for the formation and invasiveness of chemically induced tumors in mouse skin. However, the impact of keratinocyte‐specific Twist1 deletion on skin carcinogenesis caused by UVB radiation has not been reported. Deletion of Twist1 in basal keratinocytes of mouse epidermis using K5.Cre × Twist1flox/flox mice led to significantly reduced UVB‐induced epidermal hyperproliferation. In addition, keratinocyte‐specific deletion of Twist1 significantly suppressed UVB‐induced skin carcinogenesis. Further analyses revealed that deletion of Twist1 in cultured keratinocytes or mouse epidermis in vivo led to keratinocyte differentiation. In this regard, deletion of Twist1 in epidermal keratinocytes showed significant induction of early and late differentiation markers, including TG1, K1, OVOL1, loricrin, and filaggrin. Similar results were obtained with topical application of harmine, a Harmala alkaloid that leads to degradation of Twist1. In contrast, overexpression of Twist1 in cultured keratinocytes suppressed calcium‐induced differentiation. Further analyses using both K5.Cre × Twist1flox/flox mice and an inducible system where Twist1 was deleted in bulge region keratinocytes showed loss of expression of hair follicle stem/progenitor markers, including CD34, Lrig1, Lgr5, and Lgr6. These data support the conclusion that Twist1 has a direct role in maintaining the balance between proliferation and differentiation of keratinocytes and keratinocyte stem/progenitor populations. Collectively, these results demonstrate a critical role for Twist1 early in the process of UVB skin carcinogenesis, and that Twist1 may be a novel target for the prevention of cutaneous squamous cell carcinoma.
Cutaneous squamous cell carcinoma (cSCC) represents an important clinical problem requiring novel approaches for both prevention and treatment. The transcription factor, Twist-related protein 1 (Twist1), has been identified as having a key mechanistic role in the development and progression of cSCC. Studies in relevant mouse models of cSCC have shown that Twist1 regulates epithelial-mesenchymal transition (EMT) and stemness driving progression and metastasis of cSCC. In addition, further research has shown that Twist1 regulates the balance between keratinocyte proliferation and differentiation and therefore impacts earlier stages of cSCC development. Through use of keratinocyte specific Twist1 knockout models, a role for this gene in keratinocyte stem cell homeostasis has been revealed. As a transcription factor, Twist1 regulates a large number of genes both in a positive, as well as a negative manner across several interdependent pathways. Studies in keratinocyte specific knockout models have shown that Twist1 upregulates the expression of genes involved in proliferation, stemness, and EMT while downregulating the expression of genes associated with differentiation. Furthermore, a number of compounds, including naturally occurring compounds, have been identified that target Twist1 and can block its effects in cancer cells and in keratinocytes in vivo. Collectively, the current understanding of Twist1 function in cSCC development and progression suggests that it represents a potential target for prevention and treatment of cSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.