The objective of this work is obtaining W-30 wt% Cu composite powder from ammonium paratungstate hydrated (APT) and hydrated copper nitrate and investigating the influence of some production process parameters of W-30 wt% Cu in particles form which results in high sinterability and densification of W-30 wt% Cu composite. To achieve this objective, the powder was obtained by manually mixing the APT and copper nitrate and reducing under a hydrogen atmosphere at 800 °C and then compacting at 500 MPa and sintering in a tubular furnace at 1200 °C for 60 minutes. The obtained materials were characterized by XRD, SEM, EDS, particle size analysis, density and microhardness measurements. The composite powder showed a good homogenization of Cu in W with very fine and agglomerated particles and a mean crystallite size of 25.64 nm. SEM coupled with EDS with mapping analysis revealed a homogeneous distribution of Cu and W in the sintered sample. The composite had a relative density of 96.77% and a microhardness of 523.66 HV. Therefore the method of obtaining the composite powder is feasible to sinter W-30 wt% Cu powder due to a greater dispersion and homogenization of phases and the average particle size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.