This paper presents the a set of multi-domain load models that allow simulating the dynamics of coalesced electrical power and the thermo-fluid system by exploiting the Modelica language based on the Modelica OpenIPSL power system library. This allows for phasor domain representation of the electrical grid, such as that used in de facto power system stability software, to be combined with the electromechanical (e.g. motor-drive) and thermo-fluid representation of the load (e.g. heat pumps and pipes). The added dynamics of the thermo-fluid and mechanical interfaces allow for simulating the transient effects of disturbances of the load explicitly by following its own constitutive physics, thereby enabling dynamic interaction between electrical and hydraulic contingencies. The modeled components are described with emphasis on how they are modeled in Modelica and were tested for different electrical and fluid-flow contingencies, demonstrating their usability and their viability in representing higher fidelity multi-domain load systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.