Summary1. Tropical forests are globally important, but it is not clear whether biodiversity enhances carbon storage and sequestration in them. We tested this relationship focusing on components of functional trait biodiversity as predictors. 2. Data are presented for three rain forests in Bolivia, Brazil and Costa Rica. Initial above-ground biomass and biomass increments of survivors, recruits and survivors + recruits (total) were estimated for trees ≥10 cm d.b.h. in 62 and 21 1.0-ha plots, respectively. We determined relationships of biomass increments to initial standing biomass (AGB i ), biomass-weighted community mean values (CWM) of eight functional traits and four functional trait variety indices (functional richness, functional evenness, functional diversity and functional dispersion). 3. The forest continuum sampled ranged from 'slow' stands dominated by trees with tough tissues and high AGB i , to 'fast' stands dominated by trees with soft, nutrient-rich leaves, lighter woods and lower AGB i . 4. We tested whether AGB i and biomass increments were related to the CWM trait values of the dominant species in the system (the biomass ratio hypothesis), to the variety of functional trait values (the niche complementarity hypothesis), or in the case of biomass increments, simply to initial standing biomass (the green soup hypothesis). 5. CWMs were reasonable bivariate predictors of AGB i and biomass increments, with CWM specific leaf area SLA, CWM leaf nitrogen content, CWM force to tear the leaf, CWM maximum adult height H max and CWM wood specific gravity the most important. AGB i was also a reasonable predictor of the three measures of biomass increment. In best-fit multiple regression models, CWM H max was the most important predictor of initial standing biomass AGB i . Only leaf traits were selected in the best models for biomass increment; CWM SLA was the most important predictor, with the expected positive relationship. There were no relationships of functional variety indices to biomass increments, and AGB i was the only predictor for biomass increments from recruits. 6. Synthesis. We found no support for the niche complementarity hypothesis and support for the green soup hypothesis only for biomass increments of recruits. We have strong support for the biomass ratio hypothesis. CWM H max is a strong driver of ecosystem biomass and carbon storage and CWM SLA, and other CWM leaf traits are especially important for biomass increments and carbon sequestration.
Abstract. Ants in the Neotropical genus Sericomyrmex Mayr cultivate fungi for food. Both ants and fungi are obligate, coevolved symbionts. The taxonomy of Sericomyrmex is problematic because the morphology of the worker caste is generally homogeneous across all of the species within the genus, species limits are vague, and the relationships between them are unknown. We used ultraconserved elements (UCEs) as genome-scale markers to reconstruct evolutionary history and to infer species boundaries in Sericomyrmex. We recovered an average of ∼990 UCE loci for 88 Sericomyrmex samples from across the geographical range of the genus as well as for five outgroup taxa. Using maximum likelihood and species-tree approaches, we recovered nearly identical topologies across datasets with 50-95% matrix completeness. We identify nine species-level lineages in Sericomyrmex, including two new species. This is less than the previously described 19 species, even accounting for two species for which we had no UCE samples, which brings the total number of Sericomyrmex species to 11. Divergence-dating analyses recovered 4.3 Ma as the crown-group age estimates for Sericomyrmex, indicating a recent, rapid radiation. We also sequenced mitochondrial cytochrome oxidase subunit I (COI) for 125 specimens. Resolution and support for clades in our COI phylogeny are weak, indicating that COI is not an appropriate species-delimitation tool. However, taxa within species consistently cluster together, suggesting that COI is useful as a species identification ('DNA barcoding') tool. We also sequenced internal transcribed spacer (ITS) and large subunit (LSU) for 32 Sericomyrmex fungal cultivars. The fungal phylogeny confirms that Sericomyrmex fungi are generalized higher-attine cultivars, interspersed with Trachymyrmex-associated fungal species, indicating cultivar sharing and horizontal transfer between these two genera. Our results indicate that UCEs offer immense potential for delimiting and resolving relationships of problematic, recently diverged species.
RAD51C was defined by Meindl et al. in 2010 as a high-risk gene involved in hereditary breast and ovarian cancers. Although this role seems to be clear, nowadays there is controversy about the indication of including the gene in routine clinical genetic testing, due to the lower prevalence or the absence of mutations found in subsequent studies. Here, we present the results of a comprehensive mutational screening of the RAD51C gene in a large series of 785 Spanish breast and/or ovarian cancer families, which, in contrast to the various subsequent studies published to date, includes the functional characterization of suspicious missense variants as reported in the initial study. We have detected 1.3% mutations of RAD51C in breast and ovarian cancer families, while mutations in breast cancer only families seem to be very rare. More than half of the deleterious variants detected were of missense type, which highlights their significance in the gene, and suggest that RAD51C mutations may have been so far partially disregarded and their prevalence underestimated due to the lack of functional complementation assays. Our results provide new evidences, suggesting that the genetic testing of RAD51C should be considered for inclusion into the clinical setting, at least for breast and ovarian cancer families, and encourage re-evaluating its role incorporating functional assays.
Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.