We evaluate the impact of climate change on U.S. air quality and health in 2050 and 2100 using a global modeling framework and integrated economic, climate, and air pollution projections.Three internally consistent socioeconomic scenarios are used to value health benefits of greenhouse gas mitigation policies specifically derived from slowing climate change. Our projections suggest that climate change, exclusive of changes in air pollutant emissions, can significantly impact ozone (O3) and fine particulate matter (PM2.5) pollution across the U.S. and increase associated health effects. Climate policy can substantially reduce these impacts and climate-related air pollution health benefits alone can offset a significant fraction of mitigation costs. We find that in contrast to co-benefits from reductions to co-emitted pollutants, the climate-induced air quality benefits of policy increase with time and are largest between 2050-2100. Our projections also suggest that increasing climate policy stringency beyond a certain degree may lead to diminishing returns relative to its cost. However, our results indicate that the air quality impacts of climate change are substantial and should be considered by cost-benefit climate policy analyses.
Abstract:We present Daysmoke, an empirical-statistical plume rise and dispersion model for simulating smoke from prescribed burns. Prescribed fires are characterized by complex plume structure including multiple-core updrafts which makes modeling with simple plume models difficult. Daysmoke accounts for plume structure in a three-dimensional veering/sheering atmospheric environment, multiple-core updrafts, and detrainment of particulate matter. The number of empirical coefficients appearing in the model theory is reduced through a sensitivity analysis with the Fourier Amplitude Sensitivity Test (FAST). Daysmoke simulations for "bent-over" plumes compare closely with Briggs theory although the two-thirds law is not explicit in Daysmoke. However, the solutions for the "highly-tilted" plume characterized by weak buoyancy, low initial vertical velocity, and large initial plume diameter depart considerably from Briggs theory. Results from a study of weak plumes from prescribed burns at Fort Benning GA showed simulated ground-level PM 2.5 comparing favorably with observations taken within the first eight kilometers of eleven prescribed burns. Daysmoke placed plume tops near the lower end of the range of observed plume tops for six prescribed burns. Daysmoke provides the levels and amounts of smoke injected into regional scale air quality models. Results from CMAQ with and without an adaptive grid are presented. OPEN ACCESSAtmosphere 2011, 2 359
Climate change can impact air quality by altering the atmospheric conditions that determine pollutant concentrations. Over large regions of the U.S., projected changes in climate are expected to favor formation of ground‐level ozone and aggravate associated health effects. However, modeling studies exploring air quality‐climate interactions have often overlooked the role of natural variability, a major source of uncertainty in projections. Here we use the largest ensemble simulation of climate‐induced changes in air quality generated to date to assess its influence on estimates of climate change impacts on U.S. ozone. We find that natural variability can significantly alter the robustness of projections of the future climate's effect on ozone pollution. In this study, a 15 year simulation length minimum is required to identify a distinct anthropogenic‐forced signal. Therefore, we suggest that studies assessing air quality impacts use multidecadal simulations or initial condition ensembles. With natural variability, impacts attributable to climate may be difficult to discern before midcentury or under stabilization scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.