Abstract-The CoWriter activity involves a child in a rich and complex interaction where he has to teach handwriting to a robot. The robot must convince the child it needs his help and it actually learns from his lessons. To keep the child engaged, the robot must learn at the right rate, not too fast otherwise the kid will have no opportunity for improving his skills and not too slow otherwise he may loose trust in his ability to improve the robot' skills. We tested this approach in real pedagogic/therapeutic contexts with children in difficulty over repeated long sessions (40-60 min). Through 3 different case studies, we explored and refined experimental designs and algorithms in order for the robot to adapt to the troubles of each child and to promote their motivation and self-confidence. We report positive observations, suggesting commitment of children to help the robot, and their comprehension that they were good enough to be teachers, overcoming their initial low confidence with handwriting.
Measuring "how much the human is in the interaction"-the level of engagement-is instrumental in building effective interactive robots. Engagement, however, is a complex, multi-faceted cognitive mechanism that is only indirectly observable. This article formalizes with-me-ness as one of such indirect measures. With-me-ness, a concept borrowed from the field of Computer-Supported Collaborative Learning, measures in a welldefined way to what extent the human is with the robot over the course of an interactive task. As such, it is a meaningful precursor of engagement. We expose in this paper the full methodology, from real-time estimation of the human's focus of attention (relying on a novel, open-source, vision-based head pose estimator), to on-line computation of with-me-ness. We report as well on the experimental validation of this approach, using a naturalistic setup involving children during a complex robotteaching task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.