A structure-antifungal activity relationship (SAR) study of 22 related cinnamic acid derivatives was carried out. Attention was focused on the antifungal activities exhibited against Aspergillus flavus, Aspergillus terreus, and Aspergillus niger. (E)-3-(4-methoxy-3-(3-methylbut-2-enyl)phenyl)acrylic acid (16) exhibited antifungal activity against A. niger, comparable to that of miconazole and a significant antifungal effect against A. flavus and A. terreus as well. A structure-activity relationship (SAR) study of related cinnamic acid derivatives has allowed a model to be proposed for the recognition of the minimal structural requirements for the antifungal effect in this series.
Thirty-four arylpropanoids and related compounds were evaluated in vitro for antifungal properties. Among them, 22 phenyl-, 4 naphthyl-, and 4 phenanthrylpropanoids; naphthalene; phenanthrene; and 2-chloro-1-hexyl-1-propanone were tested against dermatophytes by the agar dilution method. alpha-Halopropiophenones exhibited a broad spectrum of activities against Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes, Trichophyton rubrum, and Epidermophyton floccosum, with MIC values between 0.5 and >50 microg/mL. Keto, alcohol, and alpha-haloketo propyl derivatives of naphthalene and phenanthrene also showed very good activity against all dermatophytes tested, clearly showing that in these series, a halogen atom is not necessary for activity. Phenanthryl derivatives were more active (MICs, 3-20 microg/mL) than naphthyl ones (MICs, 3-50 microg/mL). A structure-activity relationship study was carried out and aided in establishing the structural requirements of arylpropanoids for antifungal activities. Because dermatophytes are a group of fungi that characteristically infect the keratinized areas of the body, these new series of antifungal compounds open the possibility of discovering new topical antifungal drugs for the treatment of dermatomycoses, which are frequently very difficult to eradicate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.