Abstract:The lack of reliable continuous rainfall records can exacerbate the negative impact of extreme storm events. The inability to describe the continuous characteristics of rainfall from storm events increases the likelihood that the design of hydraulic structures will be inadequate. To mitigate extreme storm impacts and improve water governance at the catchment scale, it is vital to improve the availability of data and the array of tools used to model and forecast hydrological processes. In this paper, we describe and discuss the implementation of a web-based system for the estimation of intensity-duration-frequency (IDF) curves (WEBSE IDF ) in Chile. The web platform was constructed using records from 47 pluviographic gauges available in central Chile (30-40 • S), with at least 15 years of reliable records. IDF curves can be generated for durations ranging from 15 min to 24 h. In addition, the extrapolation of rainfall intensity from pluviograph to pluviometric gauges (i.e., 24-h rainfall accumulation) can be carried out using the storm index (S I ) method. IDF curves can also be generated for any spatial location within central Chile using the ordinary Kriging method. These procedures allow the generation of numerical and graphical displays of IDF curves, for any selected spatial location, and for any combination of probability distribution function (PDF), parameter estimation method, and type of IDF model. One of the major advantages of WEBSE IDF is the flexibility of its database, which can be easily modified and saved to generate IDF curves under user-defined scenarios, that is, changing climate conditions. The implementation and validation of WEBSE IDF serves as a decision support system, providing an important tool for improving the ability of the Chilean government to mitigate the impact of extreme hydrologic events in central Chile. The system is freely available for students, researchers, and other relevant professionals, to improve technical decisions of public and private institutions.
Debido a los eventos de precipitación extrema provocada por el cambio climático y a la alteración acelerada de las cuencas por el crecimiento poblacional, es importante pronosticar los caudales que generan las cuencas por los eventos de precipitación. El objetivo de este estudio fue predecir caudales horarios en la cuenca del río Huaynamota usando el Filtro de Kalman Discreto (DKF) junto con un modelo autorregresivo con entrada exógena (ARX). Al inicio los parámetros del filtro de Kalman se definen y después se recalculan por periodos definidos, es decir los valores de los parámetros del modelo se actualizan constantemente. El pronóstico de caudales se realizó en seis pasos hacia adelante (L=1, 2, 3, 4, 5 y 6 horas). La cuenca de estudio es parte del río Huaynamota, delimitada por la estación hidrométrica Chapalagana, aguas arriba de la presa Aguamilpa, en Nayarit, México. La cuenca del río Huaynamota es un tributario del río Santiago. Series de datos horarias se emplearon para precipitación y caudal, de agosto a septiembre del 2017. El modelo de pronóstico DKF-ARX mostró índices de eficiencia de Nash-Sutcliffe entre 0.99 y 0.85 con L=1 y L=6, respectivamente. Se concluye que es factible obtener un buen pronóstico de caudales horarios con filtro de Kalman discreto.
Floods have caused significant human and economic losses in the Cazones River Basin, located on the Gulf of Mexico. Despite this knowledge, steps towards the design and implementation of an early warning system for the Cazones are still a pending task. In this study we contributed by establishing a hydrological scheme for forecasting mean daily discharges in the Cazones Basin. For these purposes, we calibrated, validated and compared the HyMod model (HM) which is physics-based, and an autoregressive-based model coupled with the Discrete Kalman Filter (ARX-DKF). The ability of both models to accurately predict discharges proved satisfactory results during the validation period with RMSEHYMOD = 2.77 [mm/day]; and RMSEARX-DKF = [2.38 mm/day]. Further analysis based on a Streamflow Assimilation Ratio (SAR) revealed that both models underestimate the discharges in a similar proportion. This evaluation also showed that, under the most common conditions, the simpler stochastic model (ARX-DKF) performs better; however, under extreme hydrological conditions the deterministic HM model reveals a better performance. These results are discussed under the context of future applications and additional requirements needed to implement an early warning hydrologic system for the Cazones Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.