Nowadays, most countries in the world suffer several traffic issues which generate public health problems such as deaths and injuries of drivers and pedestrians. In order to reduce these fatalities, a system for automatic detection of both distraction and drowsiness is presented in this research. Artificial intelligence, computer vision and time of flight (TOF) technologies are used to compute both distraction and drowsiness indexes, in real time. Several experiments have been developed in real conditions during the day, inside a real vehicle and in laboratory conditions, to prove the efficiency of the system. Keywords. Distraction, drowsiness, traffic accidents, TOF technology, intelligent vehicles.
ResumenLa mayoría de los países en el mundo sufren de varios problemas de tráfico que generan problemas de salud pública, tales como, excesivas muertes y lesiones de los conductores y los peatones. Con el fin de reducir estas cifras de siniestralidad, en esta investigación se presenta un sistema para la detección automática de la distracción y la somnolencia. Las tecnologías de inteligencia artificial, visión por computador y una cámara de tiempo de vuelo (TOF) son utilizadas para calcular los índices de distracción y somnolencia, en tiempo real. Varios experimentos se han desarrollado en condiciones reales durante el día, dentro de un vehículo real y en el laboratorio, para probar la eficiencia del sistema.Palabras Clave. Distracción, adormecimiento, accidentes de tráfico, tecnología TOF, vehículos inteligentes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.