New correlations are presented for the truncated Gaussian (TG) thermal contact conductance model during first loading. The TG model is also incorporated into existing models for the hysteresis effect of thermal contact conductance and for the plastic contact pressure. The TG models, as well as the existing fully Gaussian models, are compared against new experimental data collected at very low contact pressures. Comparison between the models and the data shows that the fully Gaussian model underpredicts data at low contact pressures, as already extensively reported in the literature. The first-loading TG model predicts the experiments very well over the entire range of the contact pressures tested. The hysteresis effect model proved to be accurate only for contact pressure above 400 kPa, in general. The TG model requires a surface roughness parameter, the level of truncation of the probability density function of surface heights, which cannot be obtained accurately from ordinary surface profilometry. The most accurate and straightforward way to estimate this surface geometry parameter is from thermal tests.
This paper presents studies on thermal contact conductance at light contact loads. Surface profilometry measurements are presented which show that actual surface asperity height distributions are not perfectly Gaussian. The highest asperities are truncated, causing existing thermal contact conductance models to underpredict experimental data. These observations have been incorporated into modifications of existing contact conductance models. The truncation leads to an enhancement of thermal contact conductance at light contact pressures. The preliminary model has been compared against thermal contact conductance data presented in the open literature, and good agreement is observed. The results show that the truncation is a function of the roughness level: the rougher the surface, the more truncated the surface height distribution.
New correlations are presented for the truncated Gaussian (TG) thermal contact conductance model during first loading. The TG model is also incorporated into existing models for the hysteresis effect of thermal contact conductance and for the plastic contact pressure. The TG models, as well as the existing fully Gaussian models, are compared against new experimental data collected at very low contact pressures. Comparison between the models and the data shows that the fully Gaussian model underpredicts data at low contact pressures, as already extensively reported in the literature. The first-loading TG model predicts the experiments very well over the entire range of the contact pressures tested. The hysteresis effect model proved to be accurate only for contact pressure above 400 kPa, in general. The TG model requires a surface roughness parameter, the level of truncation of the probability density function of surface heights, which cannot be obtained accurately from ordinary surface profilometry. The most accurate and straightforward way to estimate this surface geometry parameter is from thermal tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.