In the automation of many kinds of processes, the observable outcome can often be described as the combined effect of an entire sequence of actions, or controls, applied throughout its execution. In these cases, strategies to optimise control policies for individual stages of the process might not be applicable, and instead the whole policy might have to be optimised at once. On the other hand, the cost to evaluate the policy's performance might also be high, being desirable that a solution can be found with as few interactions as possible with the real system. We consider the problem of optimising control policies to allow a robot to complete a given race track within a minimum amount of time. We assume that the robot has no prior information about the track or its own dynamical model, just an initial valid driving example. Localisation is only applied to monitor the robot and to provide an indication of its position along the track's centre axis. We propose a method for finding a policy that minimises the time per lap while keeping the vehicle on the track using a Bayesian optimisation (BO) approach over a reproducing kernel Hilbert space. We apply an algorithm to search more efficiently over high-dimensional policy-parameter spaces with BO, by iterating over each dimension individually, in a sequential coordinate descent-like scheme. Experiments demonstrate the performance of the algorithm against other methods in a simulated car racing environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.