The ETR1 receptor from Arabidopsis binds the gaseous hormone ethylene. A copper ion associated with the ethylene-binding domain is required for high-affinity ethylene-binding activity. A missense mutation in the domain that renders the plant insensitive to ethylene eliminates both ethylene binding and the interaction of copper with the receptor. A sequence from the genome of the cyanobacterium Synechocystis sp. strain 6803 that shows homology to the ethylene-binding domain of ETR1 encodes a functional ethylene-binding protein. On the basis of sequence conservation between the Arabidopsis and the cyanobacterial ethylene-binding domains and on in vitro mutagenesis of ETR1, a structural model for this copper-based ethylene sensor domain is presented.
SummaryEthylene signaling in plants is mediated by a family of ethylene receptors related to bacterial two-component regulators. Expression in yeast of ethylene-binding domains from the five receptor isoforms from Arabidopsis thaliana and five-receptor isoforms from tomato confirmed that all members of the family are capable of highaffinity ethylene-binding activity. All receptor isoforms displayed a similar level of ethylene binding on a per unit protein basis, while members of both subfamily I and subfamily II from Arabidopsis showed similar slowrelease kinetics for ethylene. Quantification of receptor-isoform mRNA levels in receptor-deficient Arabidopsis lines indicated a direct correlation between total message level and total ethylene-binding activity in planta. Increased expression of remaining receptor isoforms in receptor-deficient lines tended to compensate for missing receptors at the level of mRNA expression and ethylene-binding activity, but not at the level of receptor signaling, consistent with specialized roles for family members in receptor signal output.
Plants utilize ethylene as a hormone to regulate multiple developmental processes and to coordinate responses to biotic and abiotic stress. In Arabidopsis thaliana, a small family of five receptor proteins typified by ETR1 mediates ethylene perception. Our previous work suggested that copper ions likely play a role in ethylene binding. An independent study indicated that the ran1 mutants, which display ethylene-like responses to the ethylene antagonist trans-cyclooctene, have mutations in the RAN1 copper-transporting P-type ATPase, once again linking copper ions to the ethylene-response pathway. The results presented herein indicate that genetically engineered Saccharomyces cerevisiae expressing ETR1 but lacking the RAN1 homolog Ccc2p (⌬ccc2) lacks ethylene-binding activity. Ethylene-binding activity was restored when copper ions were added to the ⌬ccc2 mutants, showing that it is the delivery of copper that is important. Additionally, transformation of the ⌬ccc2 mutant yeast with RAN1 rescued ethylene-binding activity. Analysis of plants carrying loss-of-function mutations in ran1 showed that they lacked ethylene-binding activity, whereas seedlings carrying weak alleles of ran1 had normal ethylene-binding activity but were hypersensitive to copper-chelating agents. Altogether, the results show an essential role for RAN1 in the biogenesis of the ethylene receptors and copper homeostasis in Arabidopsis seedlings. Furthermore, the results indicate cross-talk between the ethylene-response pathway and copper homeostasis in Arabidopsis seedling development.
The gaseous hormone ethylene regulates many aspects of plant growth and development. Ethylene is perceived by a family of high-a¤nity receptors typi¢ed by the ETR1 protein from Arabidopsis. The ETR1 gene codes for a protein which contains a hydrophobic N-terminal domain that binds ethylene and a Cterminal domain that is related in sequence to histidine kinase^response regulator two-component signal transducers found in bacteria. A structural model for the ethylene-binding domain is presented in which a Cu(I) ion is coordinated within membrane-spanning a-helices of the hydrophobic domain. It is proposed that binding of ethylene to the transition metal would induce a conformational change in the sensor domain that would be propagated to the cytoplasmic transmitter domain of the protein. A total of four additional genes that are related in sequence to ETR1 have been identi¢ed in Arabidopsis. Speci¢c missense mutations in any one of the ¢ve genes leads to ethylene insensitivity in planta. Models for signal transduction that can account for the genetic dominance of these mutations are discussed.
It has been previously shown that Cu(I) and the ethylene response antagonist, Ag(I), support ethylene binding to exogenously expressed ETR1 ethylene receptors. Both are Group 11 transition metals that also include gold. We compared the effects of gold ions with those of Cu(I) and Ag(I) on ethylene binding in exogenously expressed ETR1 receptors and on ethylene growth responses in etiolated Arabidopsis seedlings. We find that gold ions also support ethylene binding but, unlike Ag(I), do not block ethylene action on plants. Instead, like Cu(I), gold ions affect seedlings independently of ethylene signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.