The purpose of Graphic Design is to transfer information about design into reality and concerns the analysis, design and representation of mechanical components and assemblies. For the correct rendering of mechanical components, this discipline requires a command of, and the ability to, manage techniques and systems for graphical representation and standardisation; 3D models in a virtual environment enable engineering students to develop graphical skills and spatial awareness. The objective of the present study is the development of an application for smart devices (mobile phones and tablets), based on the constructionist theory of learning, which will enable first year engineering degree students to acquire the technical drawing knowledge and skills necessary to render mechanical assemblies. The mobile application tested and designed in this work is called ARPAID. It is a learning tool aimed at teaching students about the representation of mechanical assemblies as part of an engineering Graphic Design course. Teaching material and a process for evaluation have been designed. A detailed description is given of a classroom activity accompanied by a tabulation and analysis of the results obtained. This mobile application, when used in a Graphic Design course, promotes a more rapid understanding of spatial relationships and problems, fosters students’ learning and motivation, and develops higher order skills. Results from before and after the use of the application will be presented and do indeed show significant improvements in student performance.
This article presents an overview of the bibliographic picture of the design parameter’s influence on the mix proportion of self-compacting concrete with recycled aggregate. Design parameters like water-cement ratio, water to paste ratio, and percentage of superplasticizers are considered in this review. Standardization and recent research on the usage of recycled aggregates in self-compacting concrete (SCC) exploit its significance in the construction sector. The usage of recycled aggregate not only resolves the negative impacts on the environment but also prevents the usage of natural resources. Furthermore, it is necessary to understand the recycled aggregate property’s role in a mixed design and SCC properties. Design parameters are not only influenced by a mix design but also play a key role in SCC’s fresh properties. Hence, in this overview, properties of SCC ingredients, calculation of design parameters in mix design, the effect of design parameters on fresh concrete properties, and the evolution of fresh concrete properties are studied.
One of the growing demands in concrete manufacture is the availability of natural fine aggregates, which account for 35% to 45% of the total concrete. An alternative method of disposal of fine recycled concrete aggregates (FRCA) generated from demolition and construction waste (C&DW) is their usage in mortar and the development of recycled mortar. The main aim of this research work is to evaluate the viability of incorporating FRCA from urban C&DW for the manufacture of cement-based mortars. Simple processing techniques like washing and sieving are adopted to improve the FRCA quality. Physical and chemical characterization of ingredients is carried out. In total four mixes of 1:3 (cement: sand) mortar with partial replacement of normalized sand with FRCA (0%, 25%, 50%, and 100%) are evaluated for mechanical properties. Water to cement ratio for all four mortar mixes are determined by fixed consistency. Mechanical and physical properties like density, compressive strength, and flexural strength are studied for various curing periods, and the result is that the optimum usage of FRCA is 25% based on a 90-day curing period.
Most concrete studies are concentrated on mechanical properties especially strength properties either directly or indirectly (fresh and durability properties). Hence, the ratio of split tensile strength to compressive strength plays a vital role in defining the concrete properties. In this review, the impact of design parameters on the strength ratio of various grades of Self-Compacting Concrete (SCC) with recycled aggregate is assessed. The design parameters considered for the study are Water to Cement (W/C) ratio, Water to Binder (W/B) ratio, Total Aggregates to Cement (TA/C) ratio, Fine Aggregate to Coarse Aggregate (FA/CA) ratio, Water to Solid (W/S) ratio in percentage, superplasticizer (SP) content (kg/cu.m), replacement percentage of recycled coarse aggregates (RCA), replacement percentage of recycled fine aggregates (RFA), fresh density and loading area of the specimen. It is observed that the strength ratio of SCC with recycled aggregates is affected by design parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.