Endogenous neurogenesis in stroke is insufficient to replace the lost brain tissue, largely due to the lack of a proper biological structure to let new cells dwell in the damaged area. We hypothesized that scaffolds made of hyaluronic acid (HA) biomaterials (BM) could provide a suitable environment to home not only new neurons, but also vessels, glia and neurofilaments. Further, the addition of exogenous cells, such as adipose stem cells (ASC) could increase this effect. Athymic mice were randomly assigned to a one of four group: stroke alone, stroke and implantation of BM, stroke and implantation of BM with ASC, and sham operated animals. Stroke model consisted of middle cerebral artery thrombosis with FeCl3. After 30 days, animals underwent magnetic resonance imaging (MRI) and were sacrificed. Proliferation and neurogenesis increased at the subventricular zone ipsilateral to the ventricle and neuroblasts, glial, and endothelial cells forming capillaries were seen inside the BM. Those effects increased when ASC were added, while there was less inflammatory reaction. Three‐dimensional scaffolds made of HA are able to home newly formed neurons, glia, and endothelial cells permitting the growth neurofilaments inside them. The addition of ASC increase these effects and decrease the inflammatory reaction to the implant. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1598–1606, 2019.
BACKGROUND Stroke is one of the most important health problems worldwide. Ischemic stroke (IS) constitutes 85-90% of the casuistry among the types of stroke and is the leading cause of disability in people over 65 years of age worldwide (Ghuman and Modo, 2016). Due to the epidemiological importance and the big socioeconomic expenditure involved, it is priority advance in its prevention, control, and treatment (Kalaria et al., 2016; Benjamin et al., 2017). The ischemic injury is caused by an interruption of blood supply in one or more cerebral blood vessels triggering a set of dynamic processes that affect all brain cells and extracellular matrix (ECM) deteriorating the "glioneurovascular niche" (Boisserand et al., 2016). The pathophysiology of IS lies in the restriction or reduction of the supply of oxygen, glucose, and nutrients in the affected brain area. The ischemic cascade begins while there is arterial obstruction causing accidental cell death of core cells damaging tissue irreversibly. This process is accompanied by events of glutamate excitotoxicity, oxidative stress, and neuroinflammation, which affect the homeostatic functioning of the neurons in the affected tissue. The combination of all of them induces permanent brain lesions (Taylor et al., 2008; Thundyil and Lim, 2015; Thornton et al., 2017). However, there are regions near the nucleus or ischemic penumbra (IP) that have had access to a collateral blood circulation, being able to partially counteract the energy deficit (Fisher and Albers, 2013; Gavaret et al., 2019).
The cortico-basal ganglia and corticothalamic projections have been extensively studied in the context of neurological and psychiatric disorders. Deep brain stimulation (DBS) is known to modulate many of these pathways to produce the desired clinical effect. The aim of this work is to describe the anatomy of the main circuits of the basal ganglia using tractography in a surgical planning station. We used imaging studies of 20 patients who underwent DBS for movement and psychiatric disorders. We segmented the putamen, caudate nucleus (CN), thalamus, and subthalamic nucleus (STN), and we also segmented the cortical areas connected with these subcortical areas. We used tractography to define the subdivisions of the basal ganglia and thalamus through the generation of fibers from the cortical areas to the subcortical structures. We were able to generate the corticostriatal and corticothalamic connections involved in the motor, associative and limbic circuits. Furthermore, we were able to reconstruct the hyperdirect pathway through the corticosubthalamic connections and we found subregions in the STN. Finally, we reconstructed the cortico-subcortical connections of the ventral intermediate nucleus, the nucleus accumbens and the CN. We identified a feasible delineation of the basal ganglia and thalamus connections using tractography. These results could be potentially useful in DBS if the parcellations are used as targets during surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.