Pattern formation in Drosophila depends initially on the translational activation of maternal messenger RNAs (mRNAs) whose protein products determine cell fate. Three mRNAs that dictate anterior, dorsoventral, and terminal specification--bicoid, Toll, and torso, respectively--showed increases in polyadenylate [poly(A)] tail length concomitant with translation. In contrast, posteriorly localized nanos mRNA, although also translationally activated, was not regulated by poly(A) status. These results implicate at least two mechanisms of mRNA activation in flies. Studies with bicoid mRNA showed that cytoplasmic polyadenylation is necessary for translation, establishing this pathway as essential for embryogenesis. Combined, these experiments identify a regulatory pathway that can coordinate initiation of maternal pattern formation systems in Drosophila.
The extracellular protease cascade of tissue plasminogen activator (tPA) and plasminogen has been implicated in neuronal plasticity and degeneration. We show here that unstimulated expression of tPA in the mouse hippocampus is concentrated in the mossy fiber pathway, with little or no expression within the perforant path, the Schaffer collaterals, or neuronal cell bodies. tPA protein is also expressed in vascular endothelial cells throughout the brain parenchyma. Four hours after excitotoxic injury, tPA protein is transiently induced within CA1 pyramidal neurons. The induced CA1 tPA is localized to neurons that survive the injury and is enzymatically active. Within the mossy fiber pathway, injury resulted in decreased tPA protein. In contrast, mossy fiber tPA activity displayed a biphasic character: transient increase at 8 hr, then a decrease by 24 hr after injury.Analysis of plasminogen activator inhibitor-1 (PAI-1) expression showed that PAI-1 antigen is upregulated by 24 hr and could account for the tPA activity downregulation seen at this time point. Plasminogen immunohistochemistry suggested an increase within the mossy fiber pathway after injury. Finally, hippocampal tPA expression among various mammalian species was strikingly different. These results indicate a complex control of tPA protein and enzymatic activity in the hippocampus that may help regulate neuronal plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.